Advertisement

Predicting Protein-Protein Interactions from Multimodal Biological Data Sources via Nonnegative Matrix Tri-Factorization

  • Hua Wang
  • Heng Huang
  • Chris Ding
  • Feiping Nie
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7262)

Abstract

Due to the high false positive rate in the high-throughput experimental methods to discover protein interactions, computational methods are necessary and crucial to complete the interactome expeditiously. However, when building classification models to identify putative protein interactions, compared to the obvious choice of positive samples from truly interacting protein pairs, it is usually very hard to select negative samples, because non-interacting protein pairs refer to those currently without experimental or computational evidence to support a physical interaction or a functional association, which, though, could interact in reality. To tackle this difficulty, instead of using heuristics as in many existing works, in this paper we solve it in a principled way by formulating the protein interaction prediction problem from a new mathematical perspective of view - sparse matrix completion, and propose a novel Nonnegative Matrix Tri-Factorization (NMTF) based matrix completion approach to predict new protein interactions from existing protein interaction networks. Because matrix completion only requires positive samples but not use negative samples, the challenge in existing classification based methods for protein interaction prediction is circumvented. Through using manifold regularization, we further develop our method to integrate different biological data sources, such as protein sequences, gene expressions, protein structure information, etc. Extensive experimental results on Saccharomyces cerevisiae genome show that our new methods outperform related state-of-the-art protein interaction prediction methods.

Keywords

Protein-Protein Interaction Multimodal Biological Data Nonnegative Matrix Factorization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ashburner, M., Ball, C., Blake, J., Botstein, D., Butler, H., Cherry, J., Davis, A., Dolinski, K., Dwight, S., Eppig, J., et al.: Gene ontology: tool for the unification of biology. Nature Genetics 25(1), 25–29 (2000)CrossRefGoogle Scholar
  2. 2.
    Ben-Hur, A., Noble, W.: Kernel methods for predicting protein–protein interactions. Bioinformatics 21(suppl. 1), i38 (2005)CrossRefGoogle Scholar
  3. 3.
    Benson, D., Karsch-Mizrachi, I., Lipman, D.: GenBank. Nucleic Acids Res. 34, D16–D20 (2006)CrossRefGoogle Scholar
  4. 4.
    Cai, D., He, X., Wu, X., Han, J.: Non-negative matrix factorization on manifold. In: Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, pp. 63–72. IEEE (2008)Google Scholar
  5. 5.
    Candès, E., Plan, Y.: Matrix completion with noise. Proceedings of the IEEE (2009)Google Scholar
  6. 6.
    Chen, X., Jeong, J.: Sequence-based prediction of protein interaction sites with an integrative method. Bioinformatics 25(5), 585 (2009)CrossRefGoogle Scholar
  7. 7.
    Chen, X., Liu, M.: Prediction of protein–protein interactions using random decision forest framework. Bioinformatics 21(24), 4394 (2005)CrossRefGoogle Scholar
  8. 8.
    Chung, F.: Spectral Graph Theory. Amer. Math. Society (1997)Google Scholar
  9. 9.
    Ding, C., He, X., Simon, H.: On the equivalence of nonnegative matrix factorization and spectral clustering. In: Proc. SIAM Data Mining Conf., Citeseer, pp. 606–610 (2005)Google Scholar
  10. 10.
    Ding, C., Li, T., Jordan, M.: Convex and semi-nonnegative matrix factorizations for clustering and low-dimension representation. Lawrence Berkeley National Laboratory, Tech. Rep. LBNL-60428 (2006)Google Scholar
  11. 11.
    Ding, C., Li, T., Peng, W., Park, H.: Orthogonal nonnegative matrix t-factorizations for clustering. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 126–135. ACM (2006)Google Scholar
  12. 12.
    Gu, Q., Zhou, J.: Co-clustering on manifolds. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 359–368. ACM (2009)Google Scholar
  13. 13.
    Ho, Y., Gruhler, A., Heilbut, A., Bader, G., Moore, L., Adams, S., Millar, A., Taylor, P., Bennett, K., Boutilier, K., et al.: Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415(6868), 180–183 (2002)CrossRefGoogle Scholar
  14. 14.
    Ito, T., Tashiro, K., Muta, S., Ozawa, R., Chiba, T., Nishizawa, M., Yamamoto, K., Kuhara, S., Sakaki, Y.: Toward a protein–protein interaction map of the budding yeast: a comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proceedings of the National Academy of Sciences of the United States of America 97(3), 1143 (2000)CrossRefGoogle Scholar
  15. 15.
    Jansen, R., Yu, H., Greenbaum, D., Kluger, Y., Krogan, N., Chung, S., Emili, A., Snyder, M., Greenblatt, J., Gerstein, M.: A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science 302(5644), 449 (2003)CrossRefGoogle Scholar
  16. 16.
    Lee, D., Seung, H.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)CrossRefGoogle Scholar
  17. 17.
    Leslie, C., Eskin, E., Weston, J., Noble, W.: Mismatch string kernels for SVM protein classification. In: Advances in Neural Information Processing Systems, pp. 1441–1448 (2003)Google Scholar
  18. 18.
    Luo, D., Ding, C., Huang, H., Li, T.: Non-negative laplacian embedding. In: 2009 Ninth IEEE International Conference on Data Mining, pp. 337–346. IEEE (2009)Google Scholar
  19. 19.
    Martial, H., Michael, R., Jean-Philippe, V., William, N.: Large-scale prediction of protein-protein interactions from structures. BMC Bioinformatics 11(114) (2010)Google Scholar
  20. 20.
    Martin, S., Roe, D., Faulon, J.L.: Predicting protein–protein interactions using signature products. Bioinformatics 221(2), 218 (2005)CrossRefGoogle Scholar
  21. 21.
    Nabieva, E., Jim, K., Agarwal, A., Chazelle, B., Singh, M.: Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics 21(suppl. 1), i302 (2005)CrossRefGoogle Scholar
  22. 22.
    Qi, Y., Klein-Seetharaman, J., Bar-Joseph, Z.: Random forest similarity for protein-protein interaction prediction from multiple sources. In: Pac. Symp. Biocomput., vol. 10, pp. 531–542 (2005)Google Scholar
  23. 23.
    Qiu, J., Hue, M., Ben-Hur, A., Vert, J., Noble, W.: A structural alignment kernel for protein structures. Bioinformatics 23(9), 1090 (2007)CrossRefGoogle Scholar
  24. 24.
    Schwikowski, B., Uetz, P., Fields, S.: A network of protein–protein interactions in yeast. Nature Biotechnology 18(12), 1257–1261 (2000)CrossRefGoogle Scholar
  25. 25.
    Shen, J., Zhang, J., Luo, X., Zhu, W., Yu, K., Chen, K., Li, Y., Jiang, H.: Predicting protein–protein interactions based only on sequences information. Proceedings of the National Academy of Sciences 104(11), 4337 (2007)CrossRefGoogle Scholar
  26. 26.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE. Trans. on Pattern Analysis and Machine Intelligence 22, 888–905 (2000)CrossRefGoogle Scholar
  27. 27.
    Shoemaker, B.A., Panchenko, A.R.: Deciphering protein-protein interactions. Part I. experimental techniques and databases. PLoS Computational Biology 3(3), 334–337 (2007)CrossRefGoogle Scholar
  28. 28.
    Shoemaker, B., Panchenko, A.: Deciphering protein-protein interactions. Part II. Computational methods to predict protein and domain interaction partners. PLoS Computational Biology 3(4), 595–601 (2007)CrossRefGoogle Scholar
  29. 29.
    Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34(database issue), D535 (2006)CrossRefGoogle Scholar
  30. 30.
    Vazquez, A., Flammini, A., Maritan, A., Vespignani, A.: Global protein function prediction from protein-protein interaction networks. Nature Biotechnology 21(6), 697–700 (2003)CrossRefGoogle Scholar
  31. 31.
    Wang, H., Huang, H., Ding, C.: Simultaneous Clustering of Multi-Type Relational Data via Symmetric Nonnegative Matrix Tri-factorization. In: The 20th ACM Conference on Information and Knowledge Management. ACM (2011)Google Scholar
  32. 32.
    Zhang, L., Wong, S., King, O., Roth, F.: Predicting co-complexed protein pairs using genomic and proteomic data integration. BMC Bioinformatics 5(1), 38 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hua Wang
    • 1
  • Heng Huang
    • 1
  • Chris Ding
    • 1
  • Feiping Nie
    • 1
  1. 1.Department of Computer Science and EngineeringUniversity of TexasArlingtonUSA

Personalised recommendations