Advertisement

Function-Function Correlated Multi-Label Protein Function Prediction over Interaction Networks

  • Hua Wang
  • Heng Huang
  • Chris Ding
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7262)

Abstract

Many previous computational methods for protein function prediction make prediction one function at a time, fundamentally, which is equivalent to assume the functional categories of proteins to be isolated. However, biological processes are highly correlated and usually intertwined together to happen at the same time, therefore it would be beneficial to consider protein function prediction as one indivisible task and treat all the functional categories as an integral and correlated prediction target. By leveraging the function-function correlations, it is expected to achieve improved overall predictive accuracy. To this end, we develop a novel network based protein function prediction approach, under the framework of multi-label classification in machine learning, to utilize the function-function correlations. Besides formulating the function-function correlations in the optimization objective explicitly, we also exploit them as part of the pairwise protein-protein similarities implicitly. The algorithm is built upon the Green’s function over a graph, which not only employs the global topology of a network but also captures its local structural information. We evaluate the proposed approach on Saccharomyces cerevisiae species. The encouraging experimental results demonstrate the effectiveness of the proposed method.

Keywords

Protein Function Prediction Green’s Function Multi-Label Classification Function-Function Correlations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ashburner, M., Ball, C., Blake, J., Botstein, D., Butler, H., Cherry, J., Davis, A., Dolinski, K., Dwight, S., Eppig, J., et al.: Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25(1), 25 (2000)CrossRefGoogle Scholar
  2. 2.
    Chua, H., Sung, W., Wong, L.: Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions. Bioinformatics 22(13), 1623–1630 (2006)CrossRefGoogle Scholar
  3. 3.
    Chung, F.: Spectral graph theory, vol. (92). American Mathematical Society (1997)Google Scholar
  4. 4.
    Deane, C., Salwinski, L., Xenarios, I., Eisenberg, D.: Protein Interactions Two Methods for Assessment of the Reliability of High Throughput Observations*. Molecular & Cellular Proteomics 1(5), 349–356 (2002)CrossRefGoogle Scholar
  5. 5.
    Ding, C., Simon, H., Jin, R., Li, T.: A learning framework using Green’s function and kernel regularization with application to recommender system. In: Proc. of ACM SIGKDD 2007, pp. 260–269 (2007)Google Scholar
  6. 6.
    Edgar, R., Domrachev, M., Lash, A.: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30(1), 207 (2002)CrossRefGoogle Scholar
  7. 7.
    Giot, L., Bader, J., Brouwer, C., Chaudhuri, A., Kuang, B., Li, Y., Hao, Y., Ooi, C., Godwin, B., Vitols, E., et al.: A protein interaction map of Drosophila melanogaster. Science 302(5651), 1727–1736 (2003)CrossRefGoogle Scholar
  8. 8.
    Harbison, C., Gordon, D., Lee, T., Rinaldi, N., Macisaac, K., Danford, T., Hannett, N., Tagne, J., Reynolds, D., Yoo, J., et al.: Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99–104 (2004)CrossRefGoogle Scholar
  9. 9.
    Hishigaki, H., Nakai, K., Ono, T., Tanigami, A., Takagi, T.: Assessment of prediction accuracy of protein function from protein-protein interaction data. Yeast 18(6), 523–531 (2001)CrossRefGoogle Scholar
  10. 10.
    Ho, Y., Gruhler, A., Heilbut, A., Bader, G., Moore, L., Adams, S., Millar, A., Taylor, P., Bennett, K., Boutilier, K., et al.: Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415(6868), 180–183 (2002)CrossRefGoogle Scholar
  11. 11.
    Karaoz, U., Murali, T., Letovsky, S., Zheng, Y., Ding, C., Cantor, C., Kasif, S.: Whole-genome annotation by using evidence integration in functional-linkage networks. Proc. Natl Acad. Sci. U.S.A. 101(9), 2888–2893 (2004)CrossRefGoogle Scholar
  12. 12.
    von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S.G., Fields, S., Bork, P.: Comparative assessment of large-scale data sets of protein–protein interactions. Nature 417(6887), 399–403 (2002)CrossRefGoogle Scholar
  13. 13.
    Mewes, H., Heumann, K., Kaps, A., Mayer, K., Pfeiffer, F., Stocker, S., Frishman, D.: MIPS: a database for genomes and protein sequences. Nucleic Acids Res. 27(1), 44 (1999)CrossRefGoogle Scholar
  14. 14.
    Nabieva, E., Jim, K., Agarwal, A., Chazelle, B., Singh, M.: Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics 21, 302–310 (2005)CrossRefGoogle Scholar
  15. 15.
    Pei, P., Zhang, A.: A topological measurement for weighted protein interaction network. In: Proceedings of IEEE Computational Systems Bioinformatics Conference, pp. 268–278 (2005)Google Scholar
  16. 16.
    Schwikowski, B., Uetz, P., Fields, S.: A network of protein- protein interactions in yeast. Nat. Biotechnol. 18, 1257–1261 (2000)CrossRefGoogle Scholar
  17. 17.
    Sharan, R., Ulitsky, I., Shamir, R.: Network-based prediction of protein function. Mol. System Biol. 3(1) (2007)Google Scholar
  18. 18.
    Stark, C., Breitkreutz, B., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34(Database Issue), D535 (2006)CrossRefGoogle Scholar
  19. 19.
    Tong, A., Lesage, G., Bader, G., Ding, H., Xu, H., Xin, X., Young, J., Berriz, G., Brost, R., Chang, M., et al.: Global mapping of the yeast genetic interaction network. Science 303(5659), 808–813 (2004)CrossRefGoogle Scholar
  20. 20.
    Vazquez, A., Flammini, A., Maritan, A., Vespignani, A.: Global protein function prediction from protein-protein interaction networks. Nat. Biotechnol. 21, 697–700 (2003)CrossRefGoogle Scholar
  21. 21.
    Wang, H., Ding, C., Huang, H.: Multi-label classification: Inconsistency and class balanced k-nearest neighbor. In: Twenty-Fourth AAAI Conference on Artificial Intelligence (2010)Google Scholar
  22. 22.
    Wang, H., Ding, C., Huang, H.: Multi-label Linear Discriminant Analysis. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 126–139. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Wang, H., Huang, H., Ding, C.: Image Annotation Using Multi-label Correlated Greens Function. In: Proc. of IEEE ICCV 2009, pp. 2029–2034 (2009)Google Scholar
  24. 24.
    Wang, H., Huang, H., Ding, C.: Multi-label Feature Transform for Image Classifications. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 793–806. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  25. 25.
    Wang, H., Huang, H., Ding, C.: Image annotation using bi-relational graph of images and semantic labels. In: Proc. of IEEE CVPR 2011, pp. 793–800. IEEE (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hua Wang
    • 1
  • Heng Huang
    • 1
  • Chris Ding
    • 1
  1. 1.Department of Computer Science and EngineeringUniversity of TexasArlingtonUSA

Personalised recommendations