Advertisement

Recovering the Tree-Like Trend of Evolution Despite Extensive Lateral Genetic Transfer: A Probabilistic Analysis

  • Sebastien Roch
  • Sagi Snir
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7262)

Abstract

Lateral gene transfer (LGT) is a common mechanism of non-vertical evolution where genetic material is transferred between two more or less distantly related organisms. It is particularly common in bacteria where it contributes to adaptive evolution with important medical implications. In evolutionary studies, LGT has been shown to create widespread discordance between gene trees as genomes become mosaics of gene histories. In particular, the Tree of Life has been questioned as an appropriate representation of bacterial evolutionary history. Nevertheless a common hypothesis is that prokaryotic evolution is primarily tree-like, but that the underlying trend is obscured by LGT. Extensive empirical work has sought to extract a common tree-like signal from conflicting gene trees. Here we give a probabilistic perspective on the problem of recovering the tree-like trend despite LGT. Under a model of randomly distributed LGT, we show that the species phylogeny can be reconstructed even in the presence of surprisingly many (almost linear number of) LGT events per gene tree. Our results, which are optimal up to logarithmic factors, are based on the analysis of a robust, computationally efficient reconstruction method and provides insight into the design of such methods. Finally we show that our results have implications for the discovery of highways of gene sharing.

Keywords

Phylogenetic Reconstruction Lateral Gene Transfer Quartet Reconstruction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ALS09]
    Arvestad, L., Lagergren, J., Sennblad, B.: The gene evolution model and computing its associated probabilities. J. ACM 56(2) (2009)Google Scholar
  2. [Bau92]
    Baum, B.R.: Combining trees as a way of combining data sets for phylogenetic inference. Taxon 41, 3–10 (1992)CrossRefGoogle Scholar
  3. [BBGS11]
    Bansal, M.S., Banay, G., Peter Gogarten, J., Shamir, R.: Detecting highways of horizontal gene transfer. Journal of Computational Biology 18(9), 1087–1114 (2011)MathSciNetCrossRefGoogle Scholar
  4. [BD86]
    Bandelt, H.-J., Dress, A.: Reconstructing the shape of a tree from observed dissimilarity data 7, 309–343 (1986)Google Scholar
  5. [BG01]
    Berry, V., Gascuel, O.: Inferring evolutionary trees with strong combinatorial evidence. Theoretical Computer Science (240), 271–298 (2001)Google Scholar
  6. [BHR05]
    Beiko, R.G., Harlow, T.J., Ragan, M.A.: Highways of gene sharing in prokaryotes. Proc. Natl. Acad. Sci. USA 102, 14332–14337 (2005)CrossRefGoogle Scholar
  7. [BSL+05]
    Bapteste, E., Susko, E., Leigh, J., MacLeod, D., Charlebois, R.L., Doolittle, W.F.: Do orthologous gene phylogenies really support tree-thinking? BMC Evol. Biol. 5, 33 (2005)CrossRefGoogle Scholar
  8. [Bun71]
    Buneman, P.: The recovery of trees from measures of dissimilarity. In: Hodson, F.R., Kendall, D.G., Tautu, P. (eds.) Anglo-Romanian Conference on Mathematics in the Archaeological and Historical Sciences, pp. 387–395. Edinburgh University Press, Mamaia (1971)Google Scholar
  9. [CA11]
    Chung, Y., Ane, C.: Comparing two bayesian methods for gene tree/species tree reconstruction: Simulations with incomplete lineage sorting and horizontal gene transfer. Systematic Biology 60(3), 261–275 (2011)CrossRefGoogle Scholar
  10. [CM06]
    Csűrös, M., Miklós, I.: A Probabilistic Model for Gene Content Evolution with Duplication, Loss, and Horizontal Transfer. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2006. LNCS (LNBI), vol. 3909, pp. 206–220. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. [DB07]
    Doolittle, W.F., Bapteste, E.: Pattern pluralism and the tree of life hypothesis. Proc. Natl. Acad. Sci. USA 104, 2043–2049 (2007)CrossRefGoogle Scholar
  12. [DBP05]
    Delsuc, F., Brinkmann, H., Philippe, H.: Phylogenomics and the reconstruction of the tree of life. Nat. Rev. Genet. 6(5), 361–375 (2005)CrossRefGoogle Scholar
  13. [DM06]
    Dagan, T., Martin, W.: The tree of one percent. Genome Biology 7(10), 118 (2006)CrossRefGoogle Scholar
  14. [DMR11]
    Daskalakis, C., Mossel, E., Roch, S.: Evolutionary trees and the ising model on the bethe lattice: a proof of steel’s conjecture. Probability Theory and Related Fields 149, 149–189 (2011), doi:10.1007/s00440-009-0246-2MathSciNetzbMATHCrossRefGoogle Scholar
  15. [DR09]
    Degnan, J.H., Rosenberg, N.A.: Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends in Ecology and Evolution 24(6), 332–340 (2009)CrossRefGoogle Scholar
  16. [DR10]
    Daskalakis, C., Roch, S.: Alignment-Free Phylogenetic Reconstruction. In: Berger, B. (ed.) RECOMB 2010. LNCS, vol. 6044, pp. 123–137. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. [DSS+05]
    Dewhirst, F.E., Shen, Z., Scimeca, M.S., Stokes, L.N., Boumenna, T., Chen, T., Paster, B.J., Fox, J.G.: Discordant 16S and 23S rRNA gene phylogenies for the Genus Helicobacter: Implications for phylogenetic inference and systematics. J. Bacteriol. 187(17), 6106–6118 (2005)CrossRefGoogle Scholar
  18. [EF03]
    Eisen, J.A., Fraser, C.M.: Phylogenomics: Intersection of evolution and genomics. Science 300(5626), 1706–1707 (2003)CrossRefGoogle Scholar
  19. [Gal07]
    Galtier, N.: A model of horizontal gene transfer and the bacterial phylogeny problem. Systematic Biology 56(4), 633–642 (2007)CrossRefGoogle Scholar
  20. [GD08]
    Galtier, N., Daubin, V.: Dealing with incongruence in phylogenomic analyses. Philos. Trans. R Soc. Lond. B Biol. Sci. 363, 4023–4029 (2008)CrossRefGoogle Scholar
  21. [GDL02]
    Peter Gogarten, J., Ford Doolittle, W., Lawrence, J.G.: Prokaryotic evolution in light of gene transfer. Molecular Biology and Evolution 19(12), 2226–2238 (2002)CrossRefGoogle Scholar
  22. [GT05]
    Peter Gogarten, J., Townsend, J.P.: Horizontal gene transfer, genome innovation and evolution. Nat. Rev. Micro. 3(9), 679–687 (2005)CrossRefGoogle Scholar
  23. [GWK05]
    Ge, F., Wang, L.S., Kim, J.: The cobweb of life revealed by genome-scale estimates of horizontal gene transfer. PLoS Biol. 3, e316 (2005)CrossRefGoogle Scholar
  24. [HRS10]
    Huson, D.H., Rupp, R., Scornavacca, C.: Phylogenetic Networks: Concepts, Algorithms and Applications. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  25. [JML09]
    Joly, S., McLenachan, P.A., Lockhart, P.J.: A statistical approach for distinguishing hybridization and incomplete lineage sorting. The American Naturalist 174(2), E54–E70 (2009)CrossRefGoogle Scholar
  26. [JNST06]
    Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Maximum likelihood of phylogenetic networks. Bioinformatics 22(21), 2604–2611 (2006)CrossRefGoogle Scholar
  27. [JNST09]
    Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Parsimony score of phylogenetic networks: Hardness results and a linear-time heuristic. IEEE/ACM Trans. Comput. Biology Bioinform. 6(3), 495–505 (2009)CrossRefGoogle Scholar
  28. [Koo07]
    Koonin, E.V.: The biological big bang model for the major transitions in evolution. Biol. Direct. 2, 21 (2007)CrossRefGoogle Scholar
  29. [KPW11]
    Koonin, E.V., Puigbo, P., Wolf, Y.I.: Comparison of phylogenetic trees and search for a central trend in the forest of life. Journal of Computational Biology 18(7), 917–924 (2011)MathSciNetCrossRefGoogle Scholar
  30. [KS01]
    Kim, J., Salisbury, B.A.: A tree obscured by vines: Horizontal gene transfer and the median tree method of estimating species phylogeny. In: Pacific Symposium on Biocomputing, pp. 571–582 (2001)Google Scholar
  31. [Kub09]
    Kubatko, L.S.: Identifying hybridization events in the presence of coalescence via model selection. Systematic Biology 58(5), 478–488 (2009)CrossRefGoogle Scholar
  32. [Lin92]
    Lindvall, T.: Lectures on the Coupling Method. Wiley, New York (1992)zbMATHGoogle Scholar
  33. [Mad97]
    Maddison, W.P.: Gene trees in species trees. Systematic Biology 46(3), 523–536 (1997)CrossRefGoogle Scholar
  34. [MK09]
    Meng, C., Kubatko, L.S.: Detecting hybrid speciation in the presence of incomplete lineage sorting using gene tree incongruence: A model. Theoretical Population Biology 75(1), 35–45 (2009)zbMATHCrossRefGoogle Scholar
  35. [Mos04]
    Mossel, E.: Phase transitions in phylogeny. Trans. Amer. Math. Soc. 356(6), 2379–2404 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  36. [PWK09]
    Eisen, J.A., Fraser, C.M.: Phylogenomics: Intersection of evolution and genomics. Science 300(5626), 1706–1707 (2003)CrossRefGoogle Scholar
  37. [PWK10]
    Puigbo, P., Wolf, Y.I., Koonin, E.V.: The tree and net components of prokaryote evolution. Genome Biology and Evolution 2, 745–756 (2010)CrossRefGoogle Scholar
  38. [Rag92]
    Ragan, M.A.: Matrix representation in reconstructing phylogenetic-relationships among the eukaryotes. Biosystems 28, 47–55 (1992)CrossRefGoogle Scholar
  39. [RB09]
    Ragan, M.A., Beiko, R.G.: Lateral genetic transfer: open issues. Philosophical Transactions of the Royal Society B: Biological Sciences 364(1527), 2241–2251 (2009)CrossRefGoogle Scholar
  40. [RY96]
    Rannala, B., Yang, Z.: Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference. J. Mol. Evol. 43, 304–311 (1996)CrossRefGoogle Scholar
  41. [SB05]
    Smets, B.F., Barkay, T.: Horizontal gene transfer: perspectives at a crossroads of scientific disciplines. Nat. Rev. Micro. 3(9), 675–678 (2005)CrossRefGoogle Scholar
  42. [SR10]
    Snir, S., Rao, S.: Quartets maxcut: A divide and conquer quartets algorithm. IEEE/ACM Trans. Comput. Biology Bioinform. 7(4), 704–718 (2010)CrossRefGoogle Scholar
  43. [SR12]
    Snir, S., Rao, S.: Quartet maxcut: A fast algorithm for amalgamating quartet trees. Molecular Phylogenetics and Evolution 62(1), 1–8 (2012)CrossRefGoogle Scholar
  44. [SS03]
    Semple, C., Steel, M.: Phylogenetics. Mathematics and its Applications series, vol. 22. Oxford University Press (2003)Google Scholar
  45. [SSJ03]
    Schouls, L.M., Schot, C.S., Jacobs, J.A.: Horizontal transfer of segments of the 16S rRNA genes between species of the Streptococcus anginosus group. J. Bacteriol. 185(24), 7241–7246 (2003)CrossRefGoogle Scholar
  46. [Ste92]
    Steel, M.: The complexity of reconstructing trees from qualitative characters and subtress. Journal of Classification 9(1), 91–116 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  47. [Suc05]
    Suchard, M.A.: Stochastic models for horizontal gene transfer. Genetics 170(1), 419–431 (2005)MathSciNetCrossRefGoogle Scholar
  48. [TRIN07]
    Than, C., Ruths, D., Innan, H., Nakhleh, L.: Confounding factors in hgt detection: Statistical error, coalescent effects, and multiple solutions. Journal of Computational Biology 14(4), 517–535 (2007)MathSciNetCrossRefGoogle Scholar
  49. [vBTP+03]
    van Berkum, P., Terefework, Z., Paulin, L., Suomalainen, S., Lindstrom, K., Eardly, B.D.: Discordant phylogenies within the rrn loci of rhizobia. J. Bacteriol. 185(10), 2988–2998 (2003)CrossRefGoogle Scholar
  50. [YTDN11]
    Yu, Y., Than, C., Degnan, J.H., Nakhleh, L.: Coalescent histories on phylogenetic networks and detection of hybridization despite incomplete lineage sorting. Systematic Biology 60(2), 138–149 (2011)CrossRefGoogle Scholar
  51. [YZW99]
    Yap, W.H., Zhang, Z., Wang, Y.: Distinct types of rrna operons exist in the genome of the Actinomycete Thermomonospora chromogena and evidence for horizontal transfer of an entire rRNA operon. J. Bacteriol. 181(17), 5201–5209 (1999)Google Scholar
  52. [ZGC+06]
    Eisen, J.A., Fraser, C.M.: Phylogenomics: Intersection of evolution and genomics. Science 300(5626), 1706–1707 (2003)CrossRefGoogle Scholar
  53. [ZLG04]
    Zhaxybayeva, O., Lapierre, P., Gogarten, J.P.: Genome mosaicism and organismal lineages. Trends Genet 20, 254–260 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sebastien Roch
    • 1
  • Sagi Snir
    • 2
  1. 1.Department of Mathematics and Bioinformatics ProgramUCLAUSA
  2. 2.Institute of EvolutionUniversity of HaifaHaifaIsrael

Personalised recommendations