Skip to main content

Structure-Guided Deimmunization of Therapeutic Proteins

  • Conference paper
Book cover Research in Computational Molecular Biology (RECOMB 2012)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7262))

Abstract

Therapeutic proteins continue to yield revolutionary new treatments for a growing spectrum of human disease, but the development of these powerful drugs requires solving a unique set of challenges. For instance, it is increasingly apparent that mitigating potential anti-therapeutic immune responses, driven by molecular recognition of a therapeutic protein’s peptide fragments, may be best accomplished early in the drug development process. One may eliminate immunogenic peptide fragments by mutating the cognate amino acid sequences, but deimmunizing mutations are constrained by the need for a folded, stable, and functional protein structure. We develop a novel approach, called EpiSweep, that simultaneously optimizes both concerns. Our algorithm identifies sets of mutations making Pareto optimal trade-offs between structure and immunogenicity, embodied by a molecular mechanics energy function and a T-cell epitope predictor, respectively. EpiSweep integrates structure-based protein design, sequence-based protein deimmunization, and algorithms for finding the Pareto frontier of a design space. While structure-based protein design is NP-hard, we employ integer programming techniques that are efficient in practice. Furthermore, EpiSweep only invokes the optimizer once per identified Pareto optimal design. We show that EpiSweep designs of regions of the therapeutics erythropoietin and staphylokinase are predicted to outperform previous experimental efforts. We also demonstrate EpiSweep’s capacity for global protein deimmunization, a case analysis involving 50 predicted epitopes and over 30,000 unique side-chain interactions. Ultimately, EpiSweep is a powerful protein design tool that guides the protein engineer towards the most promising immunotolerant biotherapeutic candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, C.Y., Georgiev, I., Anderson, A.C., Donald, B.R.: Computational structure-based redesign of enzyme activity. PNAS 106, 3764–3769 (2009)

    Article  Google Scholar 

  2. Dahiyat, B., Mayo, S.: De novo protein design: fully automated sequence selection. Science 278, 82–87 (1997)

    Article  Google Scholar 

  3. De Groot, A.S., Knopp, P.M., Martin, W.: De-immunization of therapeutic proteins by T-cell epitope modification. Dev. Biol (Basel) 122, 171–194 (2005)

    Google Scholar 

  4. De Groot, A.S., Martin, W.: Reducing risk, improving outcomes: Bioengineering less immunogenic protein therapeutics. Clinical Immunology 131, 189–201 (2009)

    Article  Google Scholar 

  5. De Groot, A.S., Moise, L.: Prediction of immunogenicity for therapeutic proteins: State of the art. Curr. Opin. Drug Discov. Devel. 10, 332–340 (2007)

    Google Scholar 

  6. Desmet, J., De Maeyer, M., Hazes, B., Lasters, I.: The dead-end elimination theorem and its use in protein side-chain positioning. Nature 356, 539–542 (1992)

    Article  Google Scholar 

  7. Dinglasan, R.R., Kalume, D.E., Kanzok, S.M., Ghosh, A.K., Muratova, O., Pandey, A., Jacobs-Lorena, M.: Disruption of Plasmodium falciparum development by antibodies against a conserved mosquito midgut antigen. PNAS 104, 13461–13466 (2007)

    Article  Google Scholar 

  8. Georgiev, I., Lilien, R.H., Donald, B.R.: A Novel Minimized Dead-End Elimination Criterion and Its Application to Protein Redesign in a Hybrid Scoring and Search Algorithm for Computing Partition Functions over Molecular Ensembles. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2006. LNCS (LNBI), vol. 3909, pp. 530–545. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Goldstein, R.F.: Efficient rotamer elimination applied to protein side-chains and related spin glasses. Biophysical J. 66, 1335–1340 (1994)

    Article  Google Scholar 

  10. Grigoryan, G., Reinke, A., Keating, A.: Design of protein-interaction specificity gives selective bZIP-binding peptides. Nature 458, 859–864 (2009)

    Article  Google Scholar 

  11. He, L., Friedman, A.M., Bailey-Kellogg, C.: A divide and conquer approach to determine the pareto frontier for optimization of protein engineering experiments proteins. Proteins (2011)

    Google Scholar 

  12. Hwang, W.Y.K., Foote, J.: Immunogenicity of engineered antibodies. Methods 36, 3–10 (2005)

    Article  Google Scholar 

  13. Indiveri, F., Murdaca, G.: Immunogenicity of erythropoietin and other growth factors. Rev. Clin. Exp. Hematol. 1, 7–11 (2002)

    Google Scholar 

  14. Jones, P.T., Dear, P.H., Foote, J., Neuberger, M.S., Winter, G.: Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321, 522–525 (1986)

    Article  Google Scholar 

  15. Jones, T.D., Phillips, W.J., Smith, B.J., Bamford, C.A., Nayee, P.D., Baglin, T.P., Gaston, J.S.H., Baker, M.P.: Identification and removal of a promiscuous CD4+ T cell epitope from the C1 domain of factor VIII. J. Thromb. Haemost. 3, 991–1000 (2005)

    Article  Google Scholar 

  16. Kessler, M., Goldsmith, D., Schellekens, H.: Immunogenicity of biopharmaceuticals. Nephrology, Dialysis, Transplantation 21, v9–v12 (2006)

    Article  Google Scholar 

  17. Kingsford, C., Chazelle, B., Singh, M.: Solving and analyzing side-chain positioning problems using linear and integer programming. Bioinf. 21, 1028–1036 (2005)

    Article  Google Scholar 

  18. Klyushnenkova, E.N., Kouiavskaia, D.V., Kodak, J.A., Vandenbark, A.A., Alexander, R.B.: Identification of HLA-DRB1*1501-restricted T-cell epitopes from human prostatic acid phosphatase. Prostate 67, 1019–1028 (2007)

    Article  Google Scholar 

  19. Leader, B., Baca, Q.J., Golan, D.E.: Protein therapeutics: a summary and pharmacological classification. Nat. Rev. Drug Disc. 7, 21–39 (2008)

    Article  Google Scholar 

  20. Lilien, R., Stevens, B., Anderson, A., Donald, B.: A novel ensemble-based scoring and search algorithm for protein redesign, and its application to modify the substrate specificity of the gramicidin synthetase A phenylalanine adenlytaion enzyme. In: Proc. RECOMB, pp. 46–57 (2004)

    Google Scholar 

  21. McCaldon, P., Argos, P.: Oligopeptide biases in protein sequences and their use in predicting protein coding regions in nucleotide sequences. Proteins: Structure, Function and Genetics 4, 99–122 (1988)

    Article  Google Scholar 

  22. Mustafa, A.S., Shaban, F.A.: Propred analysis and experimental evaluation of promiscuous T-cell epitopes of three major secreted antigens of Mycobacterium tuberculosis. Tuberculosis 86, 115–124 (2006)

    Article  Google Scholar 

  23. Osipovitch, D.C., Parker, A.S., Makokha, C.D., Desrosiers, J., DeGroot, A.S., Baiely-Kellogg, C., Griswold, K.E.: Computational design of immune-evading enzymes for ADEPT therapy (in preperation)

    Google Scholar 

  24. Parker, A.S., Griswold, K.E., Bailey-Kellogg, C.: Optimization of combinatorial mutagenesis. J. Comput. Biol. 18, 1743–1756 (2011); In: Bafna, V., Sahinalp, S.C. (eds.) RECOMB 2011. LNCS, vol. 6577, pp. 321–335. Springer, Heidelberg (2011)

    Article  Google Scholar 

  25. Parker, A.S., Griswold, K.E., Bailey-Kellogg, C.: Optimization of therapeutic proteins to delete t-cell epitopes while maintaining beneficial residue interactions. J. Bioinf. Comput. Biol. 9, 207–229 (2011); conf. ver: Proc CSB, pp.100–113 (2010)

    Article  Google Scholar 

  26. Parker, A.S., Zheng, W., Griswold, K.E., Bailey-Kellogg, C.: Optimization algorithms for functional deimmunization of therapeutic proteins. BMC Bioinf. 11, 180 (2010)

    Article  Google Scholar 

  27. Pierce, N., Winfree, E.: Protein design is NP-hard. Protein Eng. 15, 779–782 (2002)

    Article  Google Scholar 

  28. Schellekens, H.: Bioequivalence and the immunogenicity of biopharmaceuticals. Nature Reviews Drug Discovery 1, 457–462 (2002)

    Article  Google Scholar 

  29. Singh, H., Raghava, G.: ProPred: prediction of HLA-DR binding sites. Bioinformatics 17, 1236–1237 (2001)

    Article  Google Scholar 

  30. Southwood, S., Sidney, J., Kondo, A., del Guercio, M.F., Appella, E., Hoffman, S., Kubo, R.T., Chesnut, R.W., Grey, H.M., Sette, A.: Several common HLA-DR types share largely overlapping peptide binding repertoires. J. Immunol. 160, 3363–3373 (1998)

    Google Scholar 

  31. Sturniolo, T., Bono, E., Ding, J., Raddrizzani, L., Tuereci, O., Sahin, U., Braxenthaler, M., Gallazzi, F., Protti, M.P., Sinigaglia, F., Hammer, J.: Generation of tissue-specific and promiscuous HLA ligand database using DNA microarrays and virtual HLA class II matrices. Nature Biotechnol. 17, 555–561 (1999)

    Article  Google Scholar 

  32. Tangri, S., Mothe, B.R., Eisenbraun, J., Sidney, J., Southwood, S., Briggs, K., Zinckgraf, J., Bilsel, P., Newman, M., Chesnut, R., LiCalsi, C., Sette, A.: Rationally engineered therapeutic proteins with reduced immunogenicity. J. Immunol. 174, 3187–3196 (2005)

    Google Scholar 

  33. Wang, P., Sidney, J., Dow, C., Mothe, B., Sette, A., Peters, B.: A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comp. Biol. 4, e1000048 (2008)

    Article  Google Scholar 

  34. Warmerdam, P.A.M., Plaisance, S., Vanderlick, K., Vandervoort, P., Brepoels, K., Collen, D., Maeyer, M.D.: Elimination of a human T-cell region in staphylokinase by T-cell screening and computer modeling. J. Thromb. Haemost. 87, 666–673 (2002)

    Google Scholar 

  35. Zheng, W., Friedman, A.M., Bailey-Kellogg, C.: Algorithms for joint optimization of stability and diversity in planning combinatorial libraries of chimeric proteins. J. Comput. Biol. 16, 1151–1168 (2009); In: Vingron, M., Wong, L. (eds.) RECOMB 2008. LNCS (LNBI), vol. 4955, pp. 300–314. Springer, Heidelberg (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Parker, A.S., Griswold, K.E., Bailey-Kellogg, C. (2012). Structure-Guided Deimmunization of Therapeutic Proteins. In: Chor, B. (eds) Research in Computational Molecular Biology. RECOMB 2012. Lecture Notes in Computer Science(), vol 7262. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29627-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29627-7_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29626-0

  • Online ISBN: 978-3-642-29627-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics