Skip to main content

LoopWeaver – Loop Modeling by the Weighted Scaling of Verified Proteins

  • Conference paper
Book cover Research in Computational Molecular Biology (RECOMB 2012)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7262))

Abstract

Modeling loops is a necessary step in protein structure determination even with experimental NMR data. It is well known to be difficult. Database techniques have the advantage of producing a higher proportion of predictions with sub-angstrom accuracy, when compared with ab initio techniques, but the disadvantage of also producing a higher proportion of clashing or highly inaccurate predictions. We introduce LoopWeaver, a database method that uses multidimensional scaling to achieve better clash-free placement of loops obtained from a database of protein structures. This allows us to maintain the above-mentioned advantage while avoiding the disadvantage. Test results show that we achieve significantly better results than all other methods, including Modeler, Loopy, SuperLooper, and Rapper before refinement. With refinement, our results (LoopWeaver and Loopy consensus) are better than ROSETTA, with 0.42Å RMSD on average for 206 length 6 loops, 0.64Å local RMSD for 168 length 7 loops, 0.81Å RMSD for 117 length 8 loops, and 0.98Å RMSD for length 9 loops, while ROSETTA has 0.55, 0.79, 1.16, 1.42, respectively, at the same average time limit (3 hours). When we allow ROSETTA run for over a week, it approaches, but does not surpass, our accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de Bakker, P.I.W., DePristo, M.A., Burke, D.F., Blundell, T.L.: Ab initio construction of polypeptide fragments: Accuracy of loop decoy discrimination by an all-atom statistical potential and the amber force field with the generalized born solvation model. Proteins: Structure, Function, and Bioinformatics 51, 21–40 (2003), http://dx.doi.org/10.1002/prot.10235

    Article  Google Scholar 

  2. Basalaj, W.: Proximity visualization of abstract data. Technical report, University of Cambridge Computer Laboratory (2001), http://pavis.org

  3. Choi, Y., Deane, C.M.: Fread revisited: Accurate loop structure prediction using a database search algorithm. Proteins: Structure, Function, and Bioinformatics 78(6), 1431–1440 (2010)

    Google Scholar 

  4. Cohen, J.D.: Drawing graphs to convey proximity: an incremental arrangement method. ACM Trans. Comput.-Hum. Interact. 4, 197–229 (1997), http://doi.acm.org/10.1145/264645.264657

    Article  Google Scholar 

  5. Deane, C.M., Blundell, T.L.: Coda: A combined algorithm for predicting the structurally variable regions of protein models. Protein Science 10(3), 599–612 (2001)

    Article  Google Scholar 

  6. Fiser, A., Do, R., Sali, A.: Modeling of loops in protein structures. Protein Science 9(9), 1753–1773 (2000)

    Article  Google Scholar 

  7. Fiser, A., Sali, A.: Modeller: Generation and refinement of homology-based protein structure models. In: Charles, W., Carter, J., Sweet, R.M. (eds.) Macromolecular Crystallography, Part D. Methods in Enzymology, vol. 374, pp. 461–491. Academic Press (2003), http://www.sciencedirect.com/science/article/B7CV2-4BT8FSC-R/2/efdaef0eaf06a1c59521dd71f7612a91

  8. Hildebrand, P.W., Goede, A., Bauer, R.A., Gruening, B., Ismer, J., Michalsky, E., Preissner, R.: SuperLoopera prediction server for the modeling of loops in globular and membrane proteins. Nucleic Acids Research 37(suppl. 2), W571–W574 (2009), http://nar.oxfordjournals.org/content/37/suppl_2/W571.abstract

    Article  Google Scholar 

  9. Kabsch, W., Sander, C.: Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22(12), 2577–2637 (1983), http://dx.doi.org/10.1002/bip.360221211

    Article  Google Scholar 

  10. Lee, J., Lee, D., Park, H., Coutsias, E.A., Seok, C.: Protein loop modeling by using fragment assembly and analytical loop closure. Proteins: Structure, Function, and Bioinformatics 78(16), 3428–3436 (2010), http://dx.doi.org/10.1002/prot.22849

    Article  Google Scholar 

  11. de Leeuw, J.: Applications of Convex Analysis to Multidimensional Scaling. In: Barra, J., Brodeau, F., Romier, G., van Cutsem, B. (eds.) Recent Developments in Statistics, pp. 133–146. North Holland Publishing Company (1977)

    Google Scholar 

  12. Mandell, D.J., Coutsias, E.A., Kortemme, T.: Sub-angstrom accuracy in protein loop reconstruction by robotics-inspired conformational sampling. Nat. Methods 6(8), 551–552 (2009), http://dx.doi.org/10.1038/nmeth0809-551

    Article  Google Scholar 

  13. Mandell, D.J., Pache, R.A.: Rosetta projects: Documentation for kinematic loop modeling (October 2011), http://rosettacommons.org/manuals/archive/rosetta3.3_user_guide/app_kinematic_loopmodel.html

  14. Michalsky, E., Goede, A., Preissner, R.: Loops In Proteins (LIP)-a comprehensive loop database for homology modelling. Protein Engineering 16(12), 979–985 (2003), http://peds.oxfordjournals.org/content/16/12/979.abstract

    Article  Google Scholar 

  15. Soto, C.S.S., Fasnacht, M., Zhu, J., Forrest, L., Honig, B.: Loop modeling: sampling, filtering, and scoring. Proteins (August 2007), http://dx.doi.org/10.1002/prot.21612

  16. Wang, C., Bradley, P., Baker, D.: Protein-protein docking with backbone flexibility. Journal of Molecular Biology 373(2), 503–519 (2007), http://www.sciencedirect.com/science/article/pii/S0022283607010030

    Article  Google Scholar 

  17. Wang, G., Dunbrack, R.L.: PISCES: a protein sequence culling server. Bioinformatics 19(2), 1589–1591 (2003)

    Article  Google Scholar 

  18. Xiang, Z., Soto, C.S., Honig, B.: Evaluating conformational free energies: The colony energy and its application to the problem of loop prediction. Proceedings of the National Academy of Sciences of the United States of America 99(17), 7432–7437 (2002), http://www.pnas.org/content/99/11/7432.abstract

    Article  Google Scholar 

  19. Xu, J.: Rapid Protein Side-Chain Packing via Tree Decomposition. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 423–439. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  20. Xu, J., Berger, B.: Fast and accurate algorithms for protein side-chain packing. J. ACM 53, 533–557 (2006)

    Article  MathSciNet  Google Scholar 

  21. Zhang, C., Liu, S., Zhou, Y.: Accurate and efficient loop selections by the dfire-based all-atom statistical potential. Protein Science 13(2), 391–399 (2004), http://dx.doi.org/10.1110/ps.03411904

    Article  Google Scholar 

  22. Zhang, J., Wang, Q., Barz, B., He, Z., Kosztin, I., Shang, Y., Xu, D.: Mufold: A new solution for protein 3d structure prediction. Proteins: Structure, Function, and Bioinformatics 78, 1137–1152 (2010)

    Article  Google Scholar 

  23. Zhou, H., Zhou, Y.: Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Science 11, 2714–2726 (2002)

    Article  Google Scholar 

  24. Zhu, K., Pincus, D.L., Zhao, S., Friesner, R.A.: Long loop prediction using the protein local optimization program. Proteins: Structure, Function, and Bioinformatics 65, 438–452 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Holtby, D., Li, S.C., Li, M. (2012). LoopWeaver – Loop Modeling by the Weighted Scaling of Verified Proteins. In: Chor, B. (eds) Research in Computational Molecular Biology. RECOMB 2012. Lecture Notes in Computer Science(), vol 7262. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29627-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29627-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29626-0

  • Online ISBN: 978-3-642-29627-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics