Advertisement

LoopWeaver – Loop Modeling by the Weighted Scaling of Verified Proteins

  • Daniel Holtby
  • Shuai Cheng Li
  • Ming Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7262)

Abstract

Modeling loops is a necessary step in protein structure determination even with experimental NMR data. It is well known to be difficult. Database techniques have the advantage of producing a higher proportion of predictions with sub-angstrom accuracy, when compared with ab initio techniques, but the disadvantage of also producing a higher proportion of clashing or highly inaccurate predictions. We introduce LoopWeaver, a database method that uses multidimensional scaling to achieve better clash-free placement of loops obtained from a database of protein structures. This allows us to maintain the above-mentioned advantage while avoiding the disadvantage. Test results show that we achieve significantly better results than all other methods, including Modeler, Loopy, SuperLooper, and Rapper before refinement. With refinement, our results (LoopWeaver and Loopy consensus) are better than ROSETTA, with 0.42Å RMSD on average for 206 length 6 loops, 0.64Å local RMSD for 168 length 7 loops, 0.81Å RMSD for 117 length 8 loops, and 0.98Å RMSD for length 9 loops, while ROSETTA has 0.55, 0.79, 1.16, 1.42, respectively, at the same average time limit (3 hours). When we allow ROSETTA run for over a week, it approaches, but does not surpass, our accuracy.

Keywords

molecular structural biology loop modeling loop prediction database search 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Bakker, P.I.W., DePristo, M.A., Burke, D.F., Blundell, T.L.: Ab initio construction of polypeptide fragments: Accuracy of loop decoy discrimination by an all-atom statistical potential and the amber force field with the generalized born solvation model. Proteins: Structure, Function, and Bioinformatics 51, 21–40 (2003), http://dx.doi.org/10.1002/prot.10235 CrossRefGoogle Scholar
  2. 2.
    Basalaj, W.: Proximity visualization of abstract data. Technical report, University of Cambridge Computer Laboratory (2001), http://pavis.org
  3. 3.
    Choi, Y., Deane, C.M.: Fread revisited: Accurate loop structure prediction using a database search algorithm. Proteins: Structure, Function, and Bioinformatics 78(6), 1431–1440 (2010)Google Scholar
  4. 4.
    Cohen, J.D.: Drawing graphs to convey proximity: an incremental arrangement method. ACM Trans. Comput.-Hum. Interact. 4, 197–229 (1997), http://doi.acm.org/10.1145/264645.264657 CrossRefGoogle Scholar
  5. 5.
    Deane, C.M., Blundell, T.L.: Coda: A combined algorithm for predicting the structurally variable regions of protein models. Protein Science 10(3), 599–612 (2001)CrossRefGoogle Scholar
  6. 6.
    Fiser, A., Do, R., Sali, A.: Modeling of loops in protein structures. Protein Science 9(9), 1753–1773 (2000)CrossRefGoogle Scholar
  7. 7.
    Fiser, A., Sali, A.: Modeller: Generation and refinement of homology-based protein structure models. In: Charles, W., Carter, J., Sweet, R.M. (eds.) Macromolecular Crystallography, Part D. Methods in Enzymology, vol. 374, pp. 461–491. Academic Press (2003), http://www.sciencedirect.com/science/article/B7CV2-4BT8FSC-R/2/efdaef0eaf06a1c59521dd71f7612a91
  8. 8.
    Hildebrand, P.W., Goede, A., Bauer, R.A., Gruening, B., Ismer, J., Michalsky, E., Preissner, R.: SuperLoopera prediction server for the modeling of loops in globular and membrane proteins. Nucleic Acids Research 37(suppl. 2), W571–W574 (2009), http://nar.oxfordjournals.org/content/37/suppl_2/W571.abstract CrossRefGoogle Scholar
  9. 9.
    Kabsch, W., Sander, C.: Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22(12), 2577–2637 (1983), http://dx.doi.org/10.1002/bip.360221211 CrossRefGoogle Scholar
  10. 10.
    Lee, J., Lee, D., Park, H., Coutsias, E.A., Seok, C.: Protein loop modeling by using fragment assembly and analytical loop closure. Proteins: Structure, Function, and Bioinformatics 78(16), 3428–3436 (2010), http://dx.doi.org/10.1002/prot.22849 CrossRefGoogle Scholar
  11. 11.
    de Leeuw, J.: Applications of Convex Analysis to Multidimensional Scaling. In: Barra, J., Brodeau, F., Romier, G., van Cutsem, B. (eds.) Recent Developments in Statistics, pp. 133–146. North Holland Publishing Company (1977)Google Scholar
  12. 12.
    Mandell, D.J., Coutsias, E.A., Kortemme, T.: Sub-angstrom accuracy in protein loop reconstruction by robotics-inspired conformational sampling. Nat. Methods 6(8), 551–552 (2009), http://dx.doi.org/10.1038/nmeth0809-551 CrossRefGoogle Scholar
  13. 13.
    Mandell, D.J., Pache, R.A.: Rosetta projects: Documentation for kinematic loop modeling (October 2011), http://rosettacommons.org/manuals/archive/rosetta3.3_user_guide/app_kinematic_loopmodel.html
  14. 14.
    Michalsky, E., Goede, A., Preissner, R.: Loops In Proteins (LIP)-a comprehensive loop database for homology modelling. Protein Engineering 16(12), 979–985 (2003), http://peds.oxfordjournals.org/content/16/12/979.abstract CrossRefGoogle Scholar
  15. 15.
    Soto, C.S.S., Fasnacht, M., Zhu, J., Forrest, L., Honig, B.: Loop modeling: sampling, filtering, and scoring. Proteins (August 2007), http://dx.doi.org/10.1002/prot.21612
  16. 16.
    Wang, C., Bradley, P., Baker, D.: Protein-protein docking with backbone flexibility. Journal of Molecular Biology 373(2), 503–519 (2007), http://www.sciencedirect.com/science/article/pii/S0022283607010030 CrossRefGoogle Scholar
  17. 17.
    Wang, G., Dunbrack, R.L.: PISCES: a protein sequence culling server. Bioinformatics 19(2), 1589–1591 (2003)CrossRefGoogle Scholar
  18. 18.
    Xiang, Z., Soto, C.S., Honig, B.: Evaluating conformational free energies: The colony energy and its application to the problem of loop prediction. Proceedings of the National Academy of Sciences of the United States of America 99(17), 7432–7437 (2002), http://www.pnas.org/content/99/11/7432.abstract CrossRefGoogle Scholar
  19. 19.
    Xu, J.: Rapid Protein Side-Chain Packing via Tree Decomposition. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 423–439. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Xu, J., Berger, B.: Fast and accurate algorithms for protein side-chain packing. J. ACM 53, 533–557 (2006)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Zhang, C., Liu, S., Zhou, Y.: Accurate and efficient loop selections by the dfire-based all-atom statistical potential. Protein Science 13(2), 391–399 (2004), http://dx.doi.org/10.1110/ps.03411904 CrossRefGoogle Scholar
  22. 22.
    Zhang, J., Wang, Q., Barz, B., He, Z., Kosztin, I., Shang, Y., Xu, D.: Mufold: A new solution for protein 3d structure prediction. Proteins: Structure, Function, and Bioinformatics 78, 1137–1152 (2010)CrossRefGoogle Scholar
  23. 23.
    Zhou, H., Zhou, Y.: Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Science 11, 2714–2726 (2002)CrossRefGoogle Scholar
  24. 24.
    Zhu, K., Pincus, D.L., Zhao, S., Friesner, R.A.: Long loop prediction using the protein local optimization program. Proteins: Structure, Function, and Bioinformatics 65, 438–452 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Daniel Holtby
    • 1
  • Shuai Cheng Li
    • 2
  • Ming Li
    • 1
  1. 1.University of WaterlooCanada
  2. 2.City University of Hong KongChina

Personalised recommendations