Skip to main content

Suppression of Collisional Decoherence by Dynamical Decoupling

  • Chapter
  • First Online:
Collisional Narrowing and Dynamical Decoupling in a Dense Ensemble of Cold Atoms

Part of the book series: Springer Theses ((Springer Theses))

  • 355 Accesses

Abstract

As was already mentioned, cold atomic ensembles can be used as an interface between matter and photonic qubits in quantum networks, and in recent years vast experimental advances in this direction have been reported [35, 53–57]. The effect of collisional fluctuations was analyzed in the previous chapters and the decoherence it induces is well understood. Though fluctuations at low frequencies can be overcome by a single population inverting pulse - the celebrated coherence echo technique [58, 59], as the collision rate increases this is no longer possible due to higher frequency components. Dynamical decoupling (DD) theories generalize this technique to multi-pulse sequences by harnessing symmetry properties of the coupling Hamiltonian [60, 61, 62, 7, 8]. Though DD was demonstrated in several experiments [63–68], its use with atomic ensembles remains unexplored to date. In this chapter we study experimentally DD in a dense cold atomic ensemble and report on a substantial suppression of collisional decoherence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kuzmich A, Bowen WP, Boozer AD, Boca A, Chou CW, Duan LM, Kimble HJ (2003) Nature 423:731

    Article  ADS  Google Scholar 

  2. Chou CW, de Riedmatten H, Felinto D, Polyakov SV, van Enk SJ, Kimble HJ (2005) Nature 438:828

    Article  ADS  Google Scholar 

  3. Yuan Z, Chen Y, Zhao B, Chen S, Schmiedmayer J, Pan J (2008) Nature 454:1098

    Article  ADS  Google Scholar 

  4. Zhao B, Chen YA, Bao XH, Strassel T, Chuu CS, Jin XM, Schmiedmayer J, Yuan ZS, Chen S, Pan JW (2009) Nat Phys 5:95

    Article  Google Scholar 

  5. Schnorrberger U, Thompson JD, Trotzky S, Pugatch R, Davidson N, Kuhr S, Bloch I (2009) Phys Rev Lett 103:033003

    Article  ADS  Google Scholar 

  6. Zhang R, Garner SR, Hau LV (2009) Phys Rev Lett 103:233602

    Article  ADS  Google Scholar 

  7. Hahn EL (1950) Phys Rev 80:580

    Article  ADS  MATH  Google Scholar 

  8. Andersen MF, Kaplan A, Davidson N (2003) Phys Rev Lett 90:023001

    Article  ADS  Google Scholar 

  9. Viola L, Lloyd S (1998) Phys Rev A 58:2733

    Article  MathSciNet  ADS  Google Scholar 

  10. Viola L, Knill E, Lloyd S (1999) Phys Rev Lett 82:2417

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Search C, Berman PR (2000) Phys Rev Lett 85:2272

    Article  ADS  Google Scholar 

  12. Uhrig GS (2007) Phys Rev Lett 98:100504

    Article  ADS  Google Scholar 

  13. Cywinski L, Lutchyn RM, Nave CP, Sarma SD (2008) Phys Rev B 77:174509

    Article  ADS  Google Scholar 

  14. Fortunato EM, Viola L, Hodges J, Teklemariam G, Cory DG (2002) New J Phys 4:5

    Google Scholar 

  15. Fraval E, Sellars MJ, Longdell JJ (2005) Phys Rev Lett 95:030506

    Article  ADS  Google Scholar 

  16. Morton JJL, Tyryshkin AM, Ardavan A, Benjamin SC, Porfyrakis K, Lyon SA, Briggs GAD (2006) Nat Phys 2:40

    Article  Google Scholar 

  17. Damodarakurup S, Lucamarini M, Di Giuseppe G, Vitali D, Tombesi P (2009) Phys Rev Lett 103:040502

    Article  ADS  Google Scholar 

  18. Biercuk MJ, Uys H, VanDevender AP, Shiga N, Itano WM, Bollinger JJ (2009) Nature 458:996

    Article  ADS  Google Scholar 

  19. Du J, Rong X, Zhao N, Wang Y, Yang J, Liu RB (2009) Nature 461:1265

    Article  ADS  Google Scholar 

  20. Kuhr S, Alt W, Schrader D, Dotsenko I, Miroshnychenko Y, Rauschenbeutel A, Meschede D (2005) Phys Rev A 72:023406

    Article  ADS  Google Scholar 

  21. Vandersypen LMK, Chuang IL (2005) Rev Mod Phys 76:1037

    Article  ADS  Google Scholar 

  22. Nielsen MA, Chuang IL (2000) Quantum computation and quantum information. Cambridge University Press, Cambridge

    Google Scholar 

  23. Widera A, Gerbier F, Folling S, Gericke T, Mandel O, Bloch I (2006) New J Phys 8:152

    Article  Google Scholar 

  24. Monroe CR, Cornell EA, Sackett CA, Myatt CJ, Wieman CE (1993) Phys Rev Lett 70:414

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sagi, Y. (2012). Suppression of Collisional Decoherence by Dynamical Decoupling. In: Collisional Narrowing and Dynamical Decoupling in a Dense Ensemble of Cold Atoms. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29605-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29605-5_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29604-8

  • Online ISBN: 978-3-642-29605-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics