Skip to main content

Improved Diagnosis of Biofilm Infections Using Various Molecular Methods

  • Chapter
  • First Online:
  • 613 Accesses

Part of the book series: Springer Series on Biofilms ((BIOFILMS,volume 7))

Abstract

Traditional culture-dependent methods and a number of culture-independent molecular methods including 16S rRNA gene polymerase chain reaction, construction of clone libraries, sequencing, phylogeny, fingerprinting, fluorescence in situ hybridization and quantitative PCR were used to describe the microbial composition of two types of biofilm-related infections, namely chronic venous leg ulcers and prosthetic joint infections. Multiple tissue biopsies were taken from each chronic wound, and different specimen types (joint fluid, tissue biopsy, bone biopsy and prosthesis scraping or sonication) were collected from prosthetic joint patients. The obtained results indicate that in these two types of infections the bacterial composition and yield may vary depending on the position and type of samples used for analysis. It emphasizes the need for multiple samplings in order to achieve better diagnosis and treatment of these biofilm-related infections. The most complete picture of microbial composition of biofilms is probably accomplished when several culture and culture-independent methods are used in parallel to characterize the pathogens.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Altschul SF, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Amann RI, Krumholz L, Stahl DA (1990) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172:762–770

    PubMed  CAS  Google Scholar 

  • Andersen A, Hill KE, Stephens P et al (2007) Bacterial profiling using skin grafting, standard culture and molecular bacteriological methods. J Wound Care 16:171–175

    PubMed  CAS  Google Scholar 

  • Birch L, Dawson CE, Cornett JH, Keer JT (2001) A comparison of nucleic acid amplification techniques for the assessment of bacterial viability. Lett Appl Microbiol 33:296–301

    Article  PubMed  CAS  Google Scholar 

  • Burmølle M, Thomsen TR, Fazli M et al (2010) Biofilms in chronic infections – a matter of opportunity – monospecies biofilms in multispecies infections. FEMS Immunol Med Microbiol 59:324–336

    PubMed  Google Scholar 

  • Davies CE, Hill KE, Wilson MJ et al (2004) Use of 16S ribosomal DNA PCR and denaturing gradient gel electrophoresis for analysis of the microfloras of healing and nonhealing chronic venous leg ulcers. J Clin Microbiol 42:3549–3557

    Article  PubMed  CAS  Google Scholar 

  • Drancourt M, Bollet C, Carlioz A et al (2000) 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. J Clin Microbiol 38:3623–3630

    PubMed  CAS  Google Scholar 

  • Fazli M, Bjarnsholt T, Kirketerp-Moller K, Jorgensen B, Andersen A, Krogfelt K et al (2009) Nonrandom distribution of Pseudomonas aeruginosa and Staphylococcus aureus in chronic wounds. J Clin Microbiol 47:4084–4089

    Article  PubMed  Google Scholar 

  • Hellyer TJ, DesJardin LE, Teixeira L et al (1999) Detection of viable mycobacterium tuberculosis by reverse transcriptase-strand displacement amplification of mRNA. J Clin Microbiol 37:518–523

    PubMed  CAS  Google Scholar 

  • Horz HP, Scheer S, Huenger F, Vianna ME, Conrads G (2008) Selective isolation of bacteria DNA from human clinical specimens. J Microbiol Methods 72:98–102

    Article  PubMed  CAS  Google Scholar 

  • Horz HP, Scheer S, Vianna ME, Conrads G (2010) New methods for selective isolation of bacterial DNA from human clinical specimens. Anaerobe 16:47–53

    Article  PubMed  CAS  Google Scholar 

  • Kamme C, Lindberg L (1981) Aerobic and anaerobic bacteria in deep infections after total hip arthroplasty: differential diagnosis between infectious and non-infectious loosening. Clin Orthop Relat Res 154:201–207

    PubMed  Google Scholar 

  • Kirketerp-Møller K, Jensen PØ, Fazli M et al (2008) The distribution, organization and ecology of bacteria in chronic wounds. J Clin Microbiol 46:2717–2722

    Article  PubMed  Google Scholar 

  • Kjellerup B, Thomsen TR, Nielsen JL et al (2005) Microbial diversity in biofilms from corroding heating systems. Biofouling 21:19–29

    Article  PubMed  CAS  Google Scholar 

  • Klein PG, Juneja VK (1997) Sensitive detection of viable Listeria monocytogenes by reverse transcription-PCR. Appl Environ Microbiol 63:4441–4448

    PubMed  CAS  Google Scholar 

  • Kobayashi H, Oethinger M, Tuohy MJ et al (2009) Limiting false-positive polymerase chain reaction results: detection of DNA and mRNA to differentiate viable from dead bacteria. Diagn Microbiol Infect Dis 64:445–447

    Article  PubMed  CAS  Google Scholar 

  • Kommedal O, Lekang K et al (2011) Characterization of polybacterial clinical samples using a set of group-specific broad-range primers targeting the 16S rRNA gene followed by DNA sequencing and RipSeq analysis. J Med Microbiol 60:927–936

    Article  PubMed  CAS  Google Scholar 

  • Manz W, Amann R, Ludwig W, Wagner M, Schleifer KH (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. Syst Appl Microbiol 15:593–600

    Article  Google Scholar 

  • Mikkelsen DB, Pedersen C, Højbjerg T, Schønheyder HC (2006) Culture of multiple perioperative biopsies and diagnosis of infected knee arthroplasties. APMIS 114:449–452

    Article  PubMed  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  • PRIS website. https://www.knee.dk/groups/grp_login.php. Accessed Aug 2011

  • Sheridan GE, Masters CI, Shallcross JA, MacKey BM (1998) Detection of mRNA by reverse transcription-PCR as an indicator of viability in Escherichia coli cells. Appl Environ Microbiol 64:1313–1318

    PubMed  CAS  Google Scholar 

  • Sheridan GE, Szabo EA, Mackey BM (1999) Effect of post-treatment holding conditions on detection of tufA mRNA in ethanol-treated Escherichia coli: implications for RT-PCR-based indirect viability tests. Lett Appl Microbiol 29:375–379

    Article  PubMed  CAS  Google Scholar 

  • Sung K, Hiett KL, Stern NJ (2005) Heat-treated Campylobacter spp. and mRNA stability as determined by reverse transcriptase-polymerase chain reaction. Foodborne Pathog Dis 2:130–137. doi:10.1089/fpd.2005.2.130

    Article  PubMed  CAS  Google Scholar 

  • Thomsen TR, Aasholm MS, Rudkjøbing V et al (2010) The bacteriology of chronic venous leg ulcer examined by culture-independent molecular methods. Wound Repair Regen 18:38–49

    Article  PubMed  Google Scholar 

  • Tzeneva VA, Heilig HG, van Vliet WA et al (2008) 16S rRNA targeted DGGE fingerprinting of microbial communities. Methods Mol Biol 410:335–349

    Article  PubMed  CAS  Google Scholar 

  • Wolcott R, Gontcharova V, Sun Y, Dowd S (2009) Evaluation of the bacterial diversity among and within individual venous leg ulcers using bacterial tagencoded FLX and titanium amplicon pyrosequencing and metagenomic approaches. BMC Microbiol 9:226

    Article  PubMed  Google Scholar 

  • Yaron S, Matthews KR (2002) A reverse transcriptase-polymerase chain reaction assay for detection of viable Escherichia coli O157:H7: investigation of specific target genes. J Appl Microbiol 92:633–640

    Article  PubMed  CAS  Google Scholar 

  • Zhao W, Yao S, Hsing IM (2006) A microsystem compatible strategy for viable Escherichia coli detection. Biosens Bioelectron 21:1163–1170

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Thanks to our colleagues in the Danish cross-disciplinary Prosthesis: Reduction of Infection and Pain consortium. The study was supported by a grant from the Danish Agency of Science and Technology (no. 09-052174).

Thomas Bjarnsholt, Bo Jørgensen and Klaus Kirketerp-Møller are acknowledged for great collaboration in the area of chronic ulcers. The Danish Technical Research Council supported this study under the innovation consortia “BIOMED”.

Martin Aasholm, Vibeke Rudkjøbing, Susanne Bielidt and Masumeh Chavoshi are thanked for their valuable technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trine Rolighed Thomsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thomsen, T.R., Xu, Y., Lorenzen, J., Nielsen, P.H., Schønheyder, H.C. (2012). Improved Diagnosis of Biofilm Infections Using Various Molecular Methods. In: Ehrlich, G., DeMeo, P., Costerton, J., Winkler, H. (eds) Culture Negative Orthopedic Biofilm Infections. Springer Series on Biofilms, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29554-6_3

Download citation

Publish with us

Policies and ethics