Skip to main content

Metal Nanoparticles-Based Colorimetric Probe Design and Its Application

  • Chapter
  • First Online:
Nano-Bio Probe Design and Its Application for Biochemical Analysis

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

  • 1051 Accesses

Abstract

Recent years have witnessed the development of colorimetric assay utilizing metal nanoparticles (NPs) as sensing elements based on their unique surface plasmon resonance properties. The metal NPs-based colorimetric sensors, due to their simplicity, high sensitivity, and low cost, have been widely developed for detecting various analytes in homogenous solutions, which depend on the targeted analyte-induced reversible color switch between dispersion-aggregation states of NPs. In this chapter, we introduce the novel colorimetric NPs-based probes designed by our group for the detection of biological thiols; colorimetric chiral recognition of enantiomers; colorimetric visualization of phthalates; multiplex detection of Ag+ and Hg2+.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fan CH, Wang LH, Li J, Song SP, Li D (2009) Biomolecular sensing via coupling DNA-based recognition with gold nanoparticles. J Phys D Appl Phys 42(20):203001. doi:10.1088/0022-3727/42/20/203001

    Article  Google Scholar 

  2. Iqbal SS, Mayo MW, Bruno JG, Bronk BV, Batt CA, Chambers JP (2000) A review of molecular recognition technologies for detection of biological threat agents. Biosens Bioelectron 15(11–12):549–578. doi:10.1016/S0956-5663(00)00108-1

    Article  CAS  Google Scholar 

  3. Giljohann DA, Mirkin CA (2009) Drivers of biodiagnostic development. Nature 462(7272):461–464. doi:10.1038/nature08605

    Article  CAS  Google Scholar 

  4. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277(5329):1078–1081. doi:10.1126/science.277.5329.1078

    Article  CAS  Google Scholar 

  5. Thompson DG, Enright A, Faulds K, Smith WE, Graham D (2008) Ultrasensitive DNA detection using oligonucleotide-silver nanoparticle conjugates. Anal Chem 80(8):2805–2810. doi:10.1021/ac702403w

    Article  CAS  Google Scholar 

  6. Han MS, Lytton-Jean AK, Oh BK, Heo J, Mirkin CA (2006) Colorimetric screening of DNA-binding molecules with gold nanoparticle probes. Angew Chem Int Ed Engl 45(11):1807–1810. doi:10.1002/anie.200504277

    Article  CAS  Google Scholar 

  7. Zhao W, Chiuman W, Lam JC, McManus SA, Chen W, Cui Y, Pelton R, Brook MA, Li Y (2008) DNA aptamer folding on gold nanoparticles: from colloid chemistry to biosensors. J Am Chem Soc 130(11):3610–3618. doi:10.1021/ja710241b

    Article  CAS  Google Scholar 

  8. Li F, Zhang J, Cao X, Wang L, Li D, Song S, Ye B, Fan C (2009) Adenosine detection by using gold nanoparticles and designed aptamer sequences. Analyst 134(7):1355–1360. doi:10.1039/b900900k

    Article  CAS  Google Scholar 

  9. Zhang J, Wang L, Pan D, Song S, Boey FY, Zhang H, Fan C (2008) Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures. Small 4(8):1196–1200. doi:10.1002/smll.200800057

    Article  CAS  Google Scholar 

  10. Liu J, Lu Y (2005) Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew Chem Int Ed Engl 45(1):90–94. doi:10.1002/anie.200502589

    Article  Google Scholar 

  11. Thaxton CS, Elghanian R, Thomas AD, Stoeva SI, Lee JS, Smith ND, Schaeffer AJ, Klocker H, Horninger W, Bartsch G, Mirkin CA (2009) Nanoparticle-based bio-barcode assay redefines “undetectable” PSA and biochemical recurrence after radical prostatectomy. Proc Natl Acad Sci U S A 106(44):18437–18442. doi:10.1073/pnas.0904719106

    Article  CAS  Google Scholar 

  12. Tessier PM, Jinkoji J, Cheng YC, Prentice JL, Lenhoff AM (2008) Self-interaction nanoparticle spectroscopy: a nanoparticle-based protein interaction assay. J Am Chem Soc 130(10):3106–3112. doi:10.1021/ja077624q

    Article  CAS  Google Scholar 

  13. Goto-Inoue N, Hayasaka T, Zaima N, Kashiwagi Y, Yamamoto M, Nakamoto M, Setou M (2010) The detection of glycosphingolipids in brain tissue sections by imaging mass spectrometry using gold nanoparticles. J Am Soc Mass Spectrom 21(11):1940–1943. doi:10.1016/j.jasms.2010.08.002

    CAS  Google Scholar 

  14. Scampicchio M, Arecchi A, Mannino S (2009) Optical nanoprobes based on gold nanoparticles for sugar sensing. Nanotechnology 20(13):135501. doi:10.1088/0957-4484/20/13/135501

    Article  Google Scholar 

  15. Zhang L, Yao Y, Shan J, Li H (2011) Lead (II) ion detection in surface water with pM sensitivity using aza-crown-ether-modified silver nanoparticles via dynamic light scattering. Nanotechnology 22(27):275504. doi:10.1088/0957-4484/22/27/275504

    Article  Google Scholar 

  16. Huy GD, Zhang M, Zuo P, Ye BC (2011) Multiplexed analysis of silver(I) and mercury(II) ions using oligonucletide-metal nanoparticle conjugates. Analyst 136(16):3289–3294. doi:10.1039/c1an15373k

    Article  CAS  Google Scholar 

  17. Lin CY, Yu CJ, Lin YH, Tseng WL (2010) Colorimetric sensing of silver(I) and mercury(II) ions based on an assembly of Tween 20-stabilized gold nanoparticles. Anal Chem 82(16):6830–6837. doi:10.1021/ac1007909

    Article  CAS  Google Scholar 

  18. Daniel WL, Han MS, Lee JS, Mirkin CA (2009) Colorimetric nitrite and nitrate detection with gold nanoparticle probes and kinetic end points. J Am Chem Soc 131(18):6362–6363. doi:10.1021/ja901609k

    Article  CAS  Google Scholar 

  19. Ye BC, Huy GD, Zhang M, Zuo P (2011) Multiplexed analysis of silver(I) and mercury(II) ions using oligonucletide-metal nanoparticle conjugates. Analyst 136(16):3289–3294. doi:10.1039/C1an15373k

    Article  Google Scholar 

  20. Yu AB, Jiang XC (2008) Silver nanoplates: A highly sensitive material toward inorganic anions. Langmuir 24(8):4300–4309. doi:10.1021/La7032252

    Article  Google Scholar 

  21. Pal T, Ghosh SK (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chem Rev 107(11):4797–4862. doi:10.1021/Cr0680282

    Article  Google Scholar 

  22. Pal T, Ghosh SK, Kundu S, Mandal M (2002) Silver and gold nanocluster catalyzed reduction of methylene blue by arsine in a micellar medium. Langmuir 18(23):8756–8760. doi:10.1021/La0201974

    Article  Google Scholar 

  23. Pal T, Ghosh SK, Pal A, Nath S, Kundu S, Panigrahi S (2005) Dimerization of eosin on nanostructured gold surfaces: Size regime dependence of the small metallic particles. Chem Phys Lett 412(1–3):5–11. doi:10.1016/j.cplett.2005.06.059

    Google Scholar 

  24. Sohn Y, Pradhan D, Radi A, Leung KT (2009) Interfacial electronic structure of gold nanoparticles on Si(100): alloying versus quantum size effects. Langmuir 25(16):9557–9563. doi:10.1021/la900828v

    Article  CAS  Google Scholar 

  25. Zhou HS, Honma II, Komiyama H, Haus JW (1994) Controlled synthesis and quantum-size effect in gold-coated nanoparticles. Phys Rev B: Condens Matter 50(16):12052–12056. doi:10.1103/PhysRevB.50.12052

    Article  CAS  Google Scholar 

  26. Chhabra R, Sharma J, Wang H, Zou S, Lin S, Yan H, Lindsay S, Liu Y (2009) Distance-dependent interactions between gold nanoparticles and fluorescent molecules with DNA as tunable spacers. Nanotechnology 20(48):485201. doi:10.1088/0957-4484/20/48/485201

    Article  Google Scholar 

  27. Sih BC, Wolf MO (2006) Dielectric medium effects on collective surface plasmon coupling interactions in oligothiophene-linked gold nanoparticles. J Phys Chem B 110(45):22298–22301. doi:10.1021/jp065213a

    Article  CAS  Google Scholar 

  28. Ivanov AR, Nazimov IV, Baratova L (2000) Determination of biologically active low-molecular-mass thiols in human blood I. Fast qualitative and quantitative, gradient and isocratic reversed-phase high-performance liquid chromatography with photometric and fluorescence detection. J Chromatogr A 895(1–2):157–166. doi:10.1016/S0021-9673(00)00713-5

    Article  CAS  Google Scholar 

  29. Jacobsen DW (1998) Homocysteine and vitamins in cardiovascular disease. Clin Chem 44(8 Pt 2):1833–1843

    CAS  Google Scholar 

  30. Ames BN, Liu JK, Yeo HC, Overvik-Douki E, Hagen T, Doniger SJ, Chu DW, Brooks GA (2000) Chronically and acutely exercised rats: biomarkers of oxidative stress and endogenous antioxidants. J Appl Physiol 89(1):21–28

    Google Scholar 

  31. Hartleb J, Arndt R (2001) Cysteine and indole derivatives as markers for malignant melanoma. J Chromatogr B Biomed Sci Appl 764(1–2):409–443. doi:10.1016/S0378-4347(01)00278-X

    Article  CAS  Google Scholar 

  32. Lee JS, Ulmann PA, Han MS, Mirkin CA (2008) A DNA-gold nanoparticle-based colorimetric competition assay for the detection of cysteine. Nano Lett 8(2):529–533. doi:10.1021/nl0727563

    Article  CAS  Google Scholar 

  33. Li L, Li B (2009) Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes. Analyst 134(7):1361–1365. doi:10.1039/b819842j

    Article  CAS  Google Scholar 

  34. Lee JS, Lytton-Jean AK, Hurst SJ, Mirkin CA (2007) Silver nanoparticle-oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties. Nano Lett 7(7):2112–2115. doi:10.1021/nl071108g

    Article  CAS  Google Scholar 

  35. Kimura-Suda H, Petrovykh DY, Tarlov MJ, Whitman LJ (2003) Base-dependent competitive adsorption of single-stranded DNA on gold. J Am Chem Soc 125(30):9014–9015. doi:10.1021/ja035756n

    Article  CAS  Google Scholar 

  36. Ostblom M, Liedberg B, Demers LM, Mirkin CA (2005) On the structure and desorption dynamics of DNA bases adsorbed on gold: a temperature-programmed study. J Phys Chem B 109(31):15150–15160. doi:10.1021/jp051617b

    Article  Google Scholar 

  37. Breier A, Ziegelhoffer A, Famulsky K, Michalak M, Slezak J (1996) Is cysteine residue important in FITC-sensitive ATP-binding site of P-type ATPases? A commentary to the state of the art. Mol Cell Biochem 160–161:89–93. doi:10.1007/BF00240036

    Article  Google Scholar 

  38. Shang L, Yin J, Li J, Jin L, Dong S (2009) Gold nanoparticle-based near-infrared fluorescent detection of biological thiols in human plasma. Biosens Bioelectron 25(2):269–274. doi:10.1016/j.bios.2009.06.021

    Article  CAS  Google Scholar 

  39. Chang HT, Lee KH, Chen SJ, Jeng JY, Cheng YC, Shiea JT (2007) Fluorescence and interactions with thiol compounds of Nile Red-adsorbed gold nanoparticles. J Colloid Interf Sci 307(2):340–348. doi:10.1016/j.jcis.2006.12.013

    Article  Google Scholar 

  40. Kusmierek K, Glowacki R, Bald E (2006) Analysis of urine for cysteine, cysteinylglycine, and homocysteine by high-performance liquid chromatography. Anal Bioanal Chem 385(5):855–860. doi:10.1007/s00216-006-0454-x

    Article  CAS  Google Scholar 

  41. Fernig DG, Doty RC, Tshikhudo TR, Brust M (2005) Extremely stable water-soluble Ag nanoparticles. Chem Mater 17(18):4630–4635. doi:10.1021/Cm0508017

    Article  Google Scholar 

  42. Janaky R, Varga V, Hermann A, Saransaari P, Oja SS (2000) Mechanisms of l-cysteine neurotoxicity. Neurochem Res 25(9–10):1397–1405. doi:10.1023/A:1007616817499

    Article  CAS  Google Scholar 

  43. Plateau P, Soutourina J, Blanquet S (2001) Role of d-cysteine desulfhydrase in the adaptation of Escherichia coli to d-cysteine. J Biol Chem 276(44):40864–40872. doi:10.1074/jbc.M102375200

    Article  Google Scholar 

  44. Gautier C, Burgi T (2009) Chiral gold nanoparticles. ChemPhysChem 10(3):483–492. doi:10.1002/cphc.200800709

    Article  CAS  Google Scholar 

  45. Noguez C, Garzon IL (2009) Optically active metal nanoparticles. Chem Soc Rev 38(3):757–771. doi:10.1039/b800404h

    Article  CAS  Google Scholar 

  46. Shukla N, Bartel MA, Gellman AJ (2010) Enantioselective separation on chiral Au nanoparticles. J Am Chem Soc 132(25):8575–8580. doi:10.1021/ja908219h

    Article  CAS  Google Scholar 

  47. Wang Y, Yin X, Shi M, Li W, Zhang L, Kong J (2006) Probing chiral amino acids at sub-picomolar level based on bovine serum albumin enantioselective films coupled with silver-enhanced gold nanoparticles. Talanta 69(5):1240–1245. doi:10.1016/j.talanta.2005.12.060

    Article  CAS  Google Scholar 

  48. Ye BC, Zhang M (2011) Colorimetric Chiral Recognition of Enantiomers Using the Nucleotide-Capped Silver Nanoparticles. Anal Chem 83(5):1504–1509. doi:10.1021/Ac102922f

    Article  Google Scholar 

  49. Lim II, Mott D, Engelhard MH, Pan Y, Kamodia S, Luo J, Njoki PN, Zhou S, Wang L, Zhong CJ (2009) Interparticle chiral recognition of enantiomers: a nanoparticle-based regulation strategy. Anal Chem 81(2):689–698. doi:10.1021/ac802119p

    Article  CAS  Google Scholar 

  50. Oja SS, Janaky R, Varga V, Hermann A, Saransaari P (2000) Mechanisms of l-cysteine neurotoxicity. Neurochem Res 25(9–10):1397–1405. doi:10.1023/A:1007616817499

    Google Scholar 

  51. Lopez-Carrillo L, Hernandez-Ramirez RU, Calafat AM, Torres-Sanchez L, Galvan-Portillo M, Needham LL, Ruiz-Ramos R, Cebrian ME (2010) Exposure to phthalates and breast cancer risk in northern Mexico. Environ Health Perspect 118(4):539–544. doi:10.1289/ehp.0901091

    Article  CAS  Google Scholar 

  52. Desvergne B, Feige JN, Casals-Casas C (2009) PPAR-mediated activity of phthalates: A link to the obesity epidemic? Mol Cell Endocrinol 304(1–2):43–48. doi:10.1016/j.mce.2009.02.017

    Article  CAS  Google Scholar 

  53. Botelho GG, Golin M, Bufalo AC, Morais RN, Dalsenter PR, Martino-Andrade AJ (2009) Reproductive effects of di(2-ethylhexyl)phthalate in immature male rats and its relation to cholesterol, testosterone, and thyroxin levels. Arch Environ Contam Toxicol 57(4):777–784. doi:10.1007/s00244-009-9317-8

    Article  CAS  Google Scholar 

  54. Zheng SJ, Tian HJ, Cao J, Gao YQ (2010) Exposure to di(n-butyl)phthalate and benzo(a)pyrene alters IL-1beta secretion and subset expression of testicular macrophages, resulting in decreased testosterone production in rats. Toxicol Appl Pharmacol 248(1):28–37. doi:10.1016/j.taap.2010.07.008

    Article  CAS  Google Scholar 

  55. Gasowska A, Jastrzab R, Lomozik L (2007) Specific type of interactions in the quaternary system of Cu(II), adenosine 5′-triphosphate, 1,11-diamino-4,8-diazaundecane and uridine. J Inorg Biochem 101(10):1362–1369. doi:10.1016/j.jinorgbio.2007.05.009

    Article  CAS  Google Scholar 

  56. Knobloch B, Mucha A, Operschall BP, Sigel H, Jezowska-Bojczuk M, Kozlowski H, Sigel RK (2011) Stability and structure of mixed-ligand metal ion complexes that contain Ni2 + , Cu2 + , or Zn2 + , and Histamine, as well as adenosine 5′-triphosphate (ATP4-) or uridine 5′-triphosphate (UTP(4-): an intricate network of equilibria. C. Chemistry 17(19):5393–5403. doi:10.1002/chem.201001931

    Article  CAS  Google Scholar 

  57. Tu AT, Friederich CG (1968) Interaction of copper ion with guanosine and related compounds. Biochemistry 7(12):4367–4372. doi:10.1021/bi00852a032

    Article  CAS  Google Scholar 

  58. Lomozik L, Jastrzab R (2003) Copper(II) complexes with uridine, uridine 5 ‘-monophosphate, spermidine, or spermine in aqueous solution. J Inorg Biochem 93(3–4):132–140. doi:10.1016/S0162-0134(02)00567-6

    Article  CAS  Google Scholar 

  59. Kellett A, O’Connor M, McCann M, McNamara M, Lynch P, Rosair G, McKee V, Creaven B, Walsh M, McClean S, Foltyn A, O’Shea D, Howe O, Devereux M (2011) Bis-phenanthroline copper(II) phthalate complexes are potent in vitro antitumour agents with ‘self-activating’ metallo-nuclease and DNA binding properties. Dalton Trans 40(5):1024–1027. doi:10.1039/c0dt01607a

    Article  CAS  Google Scholar 

  60. Zhang M, Liu YQ, Ye BC (2011) Rapid and sensitive colorimetric visualization of phthalates using UTP-modified gold nanoparticles cross-linked by copper(ii). Chem Commun (Camb) 47(43):11849–11851. doi:10.1039/c1cc14772b

    Article  CAS  Google Scholar 

  61. Wood CM, McDonald MD, Walker P, Grosell M, Barimo JF, Playle RC, Walsh PJ (2004) Bioavailability of silver and its relationship to ionoregulation and silver speciation across a range of salinities in the gulf toadfish (Opsanus beta). Aquat Toxicol 70(2):137–157. doi:10.1016/j.aquatox.2004.08.002

    Article  CAS  Google Scholar 

  62. Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40(12):1335–1351. doi:10.1016/S0045-6535(99)00283-0

    Article  CAS  Google Scholar 

  63. Ratte HT (1999) Bioaccumulation and toxicity of silver compounds: A review. Environ Toxicol Chem 18(1):89–108. doi:10.1002/etc.5620180112

    Article  CAS  Google Scholar 

  64. Bhardwaj VK, Singh N, Hundal MS, Hundal G (2006) Mesitylene based azo-coupled chromogenic tripodal receptors–a visual detection of Ag(I) in aqueous medium. Tetrahedron 62(33):7878–7886. doi:10.1016/j.tet.2006.05.047

    Article  CAS  Google Scholar 

  65. Harris HH, Pickering IJ, George GN (2003) The chemical form of mercury in fish. Science 301(5637):1203. doi:10.1126/science.1085941

    Article  CAS  Google Scholar 

  66. Mutter J, Naumann J, Schneider R, Walach H, Haley B (2005) Mercury and autism: accelerating evidence? Neuro Endocrinol Lett 26(5):439–446. doi:NEL260505A10

    Google Scholar 

  67. Xue X, Wang F, Liu X (2008) One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. J Am Chem Soc 130(11):3244–3245. doi:10.1021/ja076716c

    Article  CAS  Google Scholar 

  68. Li B, Du Y, Dong S (2009) DNA based gold nanoparticles colorimetric sensors for sensitive and selective detection of Ag(I) ions. Anal Chim Acta 644(1–2):78–82. doi:10.1016/j.aca.2009.04.022

    Article  CAS  Google Scholar 

  69. Thaxton CS, Georganopoulou DG, Mirkin CA (2006) Gold nanoparticle probes for the detection of nucleic acid targets. Clin Chim Acta 363(1–2):120–126. doi:10.1016/j.cccn.2005.05.042

    Article  CAS  Google Scholar 

  70. Ono A, Cao S, Togashi H, Tashiro M, Fujimoto T, Machinami T, Oda S, Miyake Y, Okamoto I, Tanaka Y (2008) Specific interactions between silver(I) ions and cytosine–cytosine pairs in DNA duplexes. Chem Commun (Camb) 39:4825–4827. doi:10.1039/b808686a

    Article  Google Scholar 

  71. Chatterjee A, Santra M, Won N, Kim S, Kim JK, Kim SB, Ahn KH (2009) Selective fluorogenic and chromogenic probe for detection of silver ions and silver nanoparticles in aqueous media. J Am Chem Soc 131(6):2040–2041. doi:10.1021/ja807230c

    Article  CAS  Google Scholar 

  72. Zhou XH, Kong DM, Shen HX (2010) G-quadruplex-hemin DNAzyme-amplified colorimetric detection of Ag + ion. Anal Chim Acta 678(1):124–127. doi:10.1016/j.aca.2010.08.025

    Article  CAS  Google Scholar 

  73. Wang H, Wang YX, Jin JY, Yang RH (2008) Gold nanoparticle-based colorimetric and “turn-on” fluorescent probe for mercury(II) ions in aqueous solution. Anal Chem 80(23):9021–9028. doi:10.1021/Ac801382k

    Article  CAS  Google Scholar 

  74. Miao P, Liu L, Li Y, Li GX (2009) A novel electrochemical method to detect mercury (II) ions. Electrochem Commun 11(10):1904–1907. doi:10.1016/j.elecom.2009.08.013

    Article  CAS  Google Scholar 

  75. Sanchez A, Walcarius A (2010) Surfactant-templated sol-gel silica thin films bearing 5-mercapto-1-methyl-tetrazole on carbon electrode for Hg(II) detection. Electrochim Acta 55(13):4201–4207. doi:10.1016/j.electacta.2010.02.016

    Article  CAS  Google Scholar 

  76. Zhang M, Yin BC, Tan W, Ye BC (2011) A versatile graphene-based fluorescence “on/off” switch for multiplex detection of various targets. Biosens Bioelectron 26(7):3260–3265. doi:10.1016/j.bios.2010.12.037

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bang-Ce Ye .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Author(s)

About this chapter

Cite this chapter

Ye, BC., Zhang, M., Yin, BC. (2012). Metal Nanoparticles-Based Colorimetric Probe Design and Its Application. In: Nano-Bio Probe Design and Its Application for Biochemical Analysis. SpringerBriefs in Molecular Science(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29543-0_4

Download citation

Publish with us

Policies and ethics