Advertisement

Hybrid GF(2) – Boolean Expressions ..for Quantum Computing Circuits

  • Claudio Moraga
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7165)

Abstract

An extension of Toffoli gates is proposed, that allows them to efficiently realize operations in GF(2) and lattice operations of a Boolean algebra. An equivalent extension is introduced into Reed Muller expressions, including mixed polarities and lattice operations, to support the design of quantum computing circuits with low quantum cost.

Keywords

Quantum Computing reversible circuits extensions on Reed Muller expressions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berman, G.P., Doolen, G.D., Mainieri, R., Tsifrinovich, V.I.: Introduction to Quantum Computers. World Scientific, Singapore (1998)zbMATHCrossRefGoogle Scholar
  2. 2.
    Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2000)Google Scholar
  3. 3.
    Pittenger, A.O.: An Introduction to Quantum Computing Algorithms. Birkhäuser, Boston (2001)Google Scholar
  4. 4.
    Toffoli, T.: Reversible Computing. In: Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980)Google Scholar
  5. 5.
    Younes, A., Miller, J.F.: Representation of Boolean quantum circuits as Reed Muller expansions. Int. Jr. Electronics 91(7), 431–444 (2004)CrossRefGoogle Scholar
  6. 6.
    Barenco, A., Bennett, C.H., Cleve, R., Di Vincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys.- Rev. A 52, 3457–3467 (1995)CrossRefGoogle Scholar
  7. 7.
    Moraga, C.: Mixed Polarity Reed Muller expressions and quantum computing. Research Report ECSC-2011-FSC-01, European Centre for Soft Computing (2011)Google Scholar
  8. 8.
    Peres, A.: Reversible logic and quantum computers. Phys. Rev., 3266–3276 (1985)Google Scholar
  9. 9.
    Maslov, D., Dueck, G., Miller, D.M., Negrevergne, C.: Quantum Circuit Simplification and Level Compaction. IEEE Trans. CAD of Integrated Circuits and Systems 27(3), 436–444 (2008)CrossRefGoogle Scholar
  10. 10.
    Moraga, C., Stanković, R.S.: On a property of spectral transforms. In: Reed Muller Workshop, pp. 19–26. World Printing Co., Iizuka (2009)Google Scholar
  11. 11.
    Luke, S.: Essentials of Methaheuristics, Lulu (2009), http://cs.gmu.edu/~sean/book/metaheuristics/
  12. 12.
    Hossain, S., Perkowski, M.: The affine gates and affine polarities for quantum arrays with small cost. In: 17th Int. Workshop on Post-Binary ULSI Systems, pp. 25–34 (2008)Google Scholar
  13. 13.
    Sasanian, Z., Miller, D.M.: Transforming MCT circuits to NCVW circuits. In: 3rd Workshop on Reversible Computation, Gent, Belgium, pp. 163–174. Press University of Bremen (2011)Google Scholar
  14. 14.
    Moraga, C.: Low quantum cost realization of Toffoli gates with multiple mixed control signals. Research Report FSC-2011-08, European Centre for Soft Computing, Mieres, Spain (2011)Google Scholar
  15. 15.
    Maslov, D., Dueck, G.W.: Improved quantum cost for n-bit Toffoli gates. Electronic Letters 39(25), 1790–1791 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Claudio Moraga
    • 1
    • 2
  1. 1.European Centre for Soft ComputingMieresSpain
  2. 2.Faculty of Computer ScienceTU Dortmund UniversityDortmundGermany

Personalised recommendations