Skip to main content

Optimization of Reversible Circuits Using Reconfigured Templates

  • Conference paper
Book cover Reversible Computation (RC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7165))

Included in the following conference series:

Abstract

This paper presents a new method to optimize the quantum costs of reversible circuits. A single quantum implementation of the Toffoli-3 gate has been used to decompose reversible circuits into quantum circuits. Reconfigured quantum templates using splitting rules are introduced. The Controlled-NOT, Controlled-V, and Controlled-V  +  gates can be split into two gates – splitting rules are derived from this fact. Quantum costs of reversible circuits are measured by the number of two-qubit operations. Therefore, the costs of reconfigured templates will be unchanged when the splitting rules are applied. Although the number of quantum gates of reconfigured templates increases, their quantum cost remains invariant. Experimental results show that significant cost reductions can be achieved with the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. 5, 183–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2000)

    Google Scholar 

  3. Perkowski, M., Lukac, M., Pivtoraiko, M., Kerntopf, P., Folgheraiter, M.: A hierarchicai approach to computer aided design of quantum circuits. In: 6th International Symposium on Representations and Methodology of Future Computing Technology, pp. 201–209 (2003)

    Google Scholar 

  4. Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for reversible logic synthesis. In: Design Automation Conference (2003)

    Google Scholar 

  5. Iwama, K., Kambayashi, Y., Yamashita, S.: Transformation rules for designing CNOT-based quantum circuits. In: Design Automation Conference, New Orleans, Louisiana, USA (2002)

    Google Scholar 

  6. Mishchenko, A., Perkowski, M.: Logic synthesis of reversible wave cascades. In: International Workshop on Logic Synthesis (2002)

    Google Scholar 

  7. Barenco, A., Bennett, C.H., Cleve, R., DiVinchenzo, D., Margolus, N., Shor, P., Sleator, T., Smolin, J., Weinfurter, H.: Elementary gates for quantum computation. The American Physical Society 52, 3457–3467 (1995)

    Google Scholar 

  8. Maslov, D., Young, C., Dueck, G.W., Miller, D.M.: Quantum circuit simplification using templates. In: DATE - Design, Automation and Test in Europe, pp. 1208–1213 (2005)

    Google Scholar 

  9. Maslov, D., Dueck, G.W., Miller, D.M.: Toffoli network synthesis with templates. Transactions on Computer Aided Design 24, 807–817 (2005)

    Article  Google Scholar 

  10. Hung, W., Song, X., Yang, G., Yang, J., Perkowski, M.: Optimal synthesis of multiple output Boolean functions using a set of quantum gates by symbolic reachability analysis. Transactions on Computer Aided Design 25, 1652–1663 (2006)

    Article  Google Scholar 

  11. Große, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact synthesis of elementary quantum gate circuits for reversible functions with don’t cares. In: International Symposium on Multiple Valued Logic, pp. 214–219 (2008)

    Google Scholar 

  12. Mazder, R.M., Banerjee, A., Dueck, G.W., Pathak, A.: Two-qubit quantum gates to reduce the quantum cost of reversible circuit. In: Proceedings of the International Symposium on Multiple-Valued Logic, pp. 86–92 (2011)

    Google Scholar 

  13. Toffoli, T.: Reversible computing. Tech memo MIT/LCS/TM-151, MIT Lab for Comp. Sci. (1980)

    Google Scholar 

  14. Peres, A.: Reversible logic and quantum computers. Phys. Rev. A 32, 3266–3276 (1985)

    Article  MathSciNet  Google Scholar 

  15. Fredkin, E., Toffoli, T.: Conservative logic. International Journal of Theoretical Physics 21, 219–253 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: An online resource for reversible functions and reversible circuits. In: Int’l Symp. on Multi-Valued Logic, pp. 220–225 (2008), RevLib, http://www.revlib.org

  17. Soeken, M., Frehse, S., Wille, R., Drechsler, R.: RevKit: A toolkit for reversible circuit design. In: Workshop on Reversible Computation (2010), RevKit, http://www.revkit.org

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rahman, M.M., Dueck, G.W., Banerjee, A. (2012). Optimization of Reversible Circuits Using Reconfigured Templates. In: De Vos, A., Wille, R. (eds) Reversible Computation. RC 2011. Lecture Notes in Computer Science, vol 7165. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29517-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29517-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29516-4

  • Online ISBN: 978-3-642-29517-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics