Time Complexity of Tape Reduction for Reversible Turing Machines

  • Holger Bock Axelsen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7165)


Studies of reversible Turing machines (RTMs) often differ in their use of static resources such as the number of tapes, symbols and internal states. However, the interplay between such resources and computational complexity is not well-established for RTMs. In particular, many foundational results in reversible computing theory are about multitape machines with two or more tapes, but it is non-obvious what these results imply for reversible complexity theory.

Here, we study how the time complexity of multitape RTMs behaves under reductions to one and two tapes. For deterministic Turing machines, it is known that the reduction from k tapes to 1 tape in general leads to a quadratic increase in time. For k to 2 tapes, a celebrated result shows that the time overhead can be reduced to a logarithmic factor. We show that identical results hold for multitape RTMs.

This establishes that the structure of reversible time complexity classes mirrors that of irreversible complexity theory, with a similar hierarchy.


Time Complexity Turing Machine Stick State Tape Head Reversible Complexity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Axelsen, H.B., Glück, R.: A Simple and Efficient Universal Reversible Turing Machine. In: Dediu, A.-H., Inenaga, S., Martín-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638, pp. 117–128. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Axelsen, H.B., Glück, R.: What Do Reversible Programs Compute? In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 42–56. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)zbMATHCrossRefGoogle Scholar
  4. 4.
    Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms. Trans. Amer. Math. Soc. 117, 285–306 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Hennie, F.: One-tape, off-line Turing machine computations. Inform. Control 8, 553–578 (1965)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hennie, F., Stearns, R.E.: Two-tape simulation of multitape Turing machines. J. ACM 13(4), 533–546 (1966)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: Proc. Foundations of Computer Science, pp. 66–75. IEEE (1997)Google Scholar
  8. 8.
    Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Lange, K.J., McKenzie, P., Tapp, A.: Reversible space equals deterministic space. J. Comput. Syst. Sci. 60(2), 354–367 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Maass, W.: Combinatorial lower bound arguments for deterministic and nondeterministic Turing machines. Trans. Amer. Math. Soc. 292(2), 675–693 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Morita, K., Shirasaki, A., Gono, Y.: A 1-tape 2-symbol reversible Turing machine. Trans. IEICE E 72(3), 223–228 (1989)Google Scholar
  12. 12.
    Pippenger, N., Fischer, M.J.: Relations among complexity measures. J. ACM 26(2), 361–381 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Tadaki, K., Yamakami, T., Lin, J.C.H.: Theory of one-tape linear-time Turing machines. Theor. Comput. Sci. 411(1), 22–43 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Vitányi, P.: Time, space, and energy in reversible computing. In: Proc. Computing Frontiers, pp. 435–444. ACM (2005)Google Scholar
  15. 15.
    Yokoyama, T., Axelsen, H.B., Glück, R.: Optimizing reversible simulation of injective functions. J. Mult.-Val. Log. S. 18(1), 5–24 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Holger Bock Axelsen
    • 1
  1. 1.DIKU, Department of Computer ScienceUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations