Skip to main content

Time Complexity of Tape Reduction for Reversible Turing Machines

  • Conference paper
Reversible Computation (RC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7165))

Included in the following conference series:

Abstract

Studies of reversible Turing machines (RTMs) often differ in their use of static resources such as the number of tapes, symbols and internal states. However, the interplay between such resources and computational complexity is not well-established for RTMs. In particular, many foundational results in reversible computing theory are about multitape machines with two or more tapes, but it is non-obvious what these results imply for reversible complexity theory.

Here, we study how the time complexity of multitape RTMs behaves under reductions to one and two tapes. For deterministic Turing machines, it is known that the reduction from k tapes to 1 tape in general leads to a quadratic increase in time. For k to 2 tapes, a celebrated result shows that the time overhead can be reduced to a logarithmic factor. We show that identical results hold for multitape RTMs.

This establishes that the structure of reversible time complexity classes mirrors that of irreversible complexity theory, with a similar hierarchy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Axelsen, H.B., Glück, R.: A Simple and Efficient Universal Reversible Turing Machine. In: Dediu, A.-H., Inenaga, S., Martín-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638, pp. 117–128. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Axelsen, H.B., Glück, R.: What Do Reversible Programs Compute? In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 42–56. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)

    Article  MATH  Google Scholar 

  4. Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms. Trans. Amer. Math. Soc. 117, 285–306 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hennie, F.: One-tape, off-line Turing machine computations. Inform. Control 8, 553–578 (1965)

    Article  MathSciNet  Google Scholar 

  6. Hennie, F., Stearns, R.E.: Two-tape simulation of multitape Turing machines. J. ACM 13(4), 533–546 (1966)

    MathSciNet  MATH  Google Scholar 

  7. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: Proc. Foundations of Computer Science, pp. 66–75. IEEE (1997)

    Google Scholar 

  8. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lange, K.J., McKenzie, P., Tapp, A.: Reversible space equals deterministic space. J. Comput. Syst. Sci. 60(2), 354–367 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Maass, W.: Combinatorial lower bound arguments for deterministic and nondeterministic Turing machines. Trans. Amer. Math. Soc. 292(2), 675–693 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Morita, K., Shirasaki, A., Gono, Y.: A 1-tape 2-symbol reversible Turing machine. Trans. IEICE E 72(3), 223–228 (1989)

    Google Scholar 

  12. Pippenger, N., Fischer, M.J.: Relations among complexity measures. J. ACM 26(2), 361–381 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  13. Tadaki, K., Yamakami, T., Lin, J.C.H.: Theory of one-tape linear-time Turing machines. Theor. Comput. Sci. 411(1), 22–43 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Vitányi, P.: Time, space, and energy in reversible computing. In: Proc. Computing Frontiers, pp. 435–444. ACM (2005)

    Google Scholar 

  15. Yokoyama, T., Axelsen, H.B., Glück, R.: Optimizing reversible simulation of injective functions. J. Mult.-Val. Log. S. 18(1), 5–24 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Axelsen, H.B. (2012). Time Complexity of Tape Reduction for Reversible Turing Machines. In: De Vos, A., Wille, R. (eds) Reversible Computation. RC 2011. Lecture Notes in Computer Science, vol 7165. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29517-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29517-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29516-4

  • Online ISBN: 978-3-642-29517-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics