Skip to main content

Quantum Coulomb Gases

  • Chapter
  • First Online:
Quantum Many Body Systems

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2051))

  • 1594 Accesses

Abstract

The study of large random matrices in physics originated with the work of Eugene Wigner who used them to predict the energy level statistics of a large nucleus. He argued that because of the complex interactions taking place in the nucleus there should be a random matrix model with appropriate symmetries, whose eigenvalues would describe the energy level spacing statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Strictly speaking, even if we use a relativistic kinetic energy, this Lagrangian is not relativistically invariant. The reason is that we consider the particles as rigid bodies, which do not Lorenz contract as they move. We will here ignore this additional complication. The Lagrangian in the form given here is that of the Abraham model of charged particles [33].

  2. 2.

    The operator inside the square root is defined as a self-adjoint operator by Friedrichs extending it from the domain of smooth functions with compact support.

References

  1. R.J. Baxter, Inequalities for potentials of particle systems. Illinois J. Math. 24(4), 645–652 (1980)

    Google Scholar 

  2. N. Bogolubov, On the theory of superfluidity. J. Phys. (USSR) 11, 23 (1947)

    Google Scholar 

  3. L. Bugliaro, J. Fröhlich, G.M. Graf, Stability of quantum electrodynamics with nonrelativistic matter. Phys. Rev. Lett. 77(17), 3494–3497 (1996)

    Google Scholar 

  4. J.G. Conlon, The ground state energy of a classical gas. Comm. Math. Phys. 94(4), 439–458 (1984)

    Google Scholar 

  5. J.G. Conlon, E.H. Lieb, H.-T. Yau, The N 7 ∕ 5 law for charged bosons. Comm. Math. Phys. 116(3), 417–448 (1988)

    Google Scholar 

  6. F.J. Dyson, Ground state energy of a finite system of charged particles. J. Math. Phys. 8, 1538–1545 (1967)

    Google Scholar 

  7. F.J. Dyson, A. Lenard, Stability of matter, I. J. Math. Phys. 8, 423–434 (1967)

    Google Scholar 

  8. F.J. Dyson, A. Lenard, Stability of matter, II. J. Math. Phys. 9, 698–711 (1968)

    Google Scholar 

  9. L. Erdős, J.P. Solovej, The kernel of Dirac operators on S 3 and R 3. Rev. Math. Phys. 13(10), 1247–1280 (2001)

    Google Scholar 

  10. C. Fefferman, The thermodynamic limit for a crystal. Comm. Math. Phys. 98, 289–311 (1985)

    Google Scholar 

  11. C. Fefferman, Stability of matter with magnetic fields. CRM Proc. Lect. Notes 12, 119–133 (1997)

    Google Scholar 

  12. C. Fefferman, R. de la Llave, Relativistic stability of matter, I. Rev. Mat. Iberoamericana 2, 119–213 (1986)

    Google Scholar 

  13. C. Fefferman, J. Fröhlich, G.M. Graf, Stability of nonrelativistic quantum mechanical matter coupled to the (ultraviolet cutoff) radiation field. Proc. Natl. Acad. Sci. USA 93, 15009–15011 (1996); Stability of ultraviolet cutoff quantum electrodynamics with non-relativistic matter. Comm. Math. Phys. 190, 309–330 (1997)

    Google Scholar 

  14. G.M. Graf, D. Schenker, On the molecular limit of Coulomb gases. Comm. Math. Phys. 174(1), 215–227 (1995)

    Google Scholar 

  15. C. Hainzl, M. Lewin, J.P. Solovej, The mean-field approximation in quantum electrodynamics: The no-photon case. Comm. Pure Appl. Math.  60, 546–596 (2007)

    Google Scholar 

  16. C. Hainzl, M. Lewin, J.P. Solovej, The thermodynamic limit of quantum Coulomb systems, Part I. General theory. Adv. Math. 221, 454–487 (2009)

    Google Scholar 

  17. C. Hainzl, M. Lewin, J.P. Solovej, The thermodynamic limit of quantum Coulomb systems, Part II. Applications. Adv. Math. 221, 488–546 (2009)

    Google Scholar 

  18. E.H. Lieb, The stability of matter. Rev. Mod. Phys. 48, 553–569 (1976)

    Google Scholar 

  19. E.H. Lieb, The N 5 ∕ 3 law for bosons. Phys. Lett. 70A, 71–73 (1979)

    Google Scholar 

  20. E.H. Lieb, J.L. Lebowitz, The constitution of matter: existence of thermodynamics for systems composed of electrons and nuclei. Adv. Math. 9, 316–398 (1972)

    Google Scholar 

  21. E.H. Lieb, M. Loss, in Analysis. Graduate Studies in Mathematics, vol. 14 (American Mathematical Society, Providence, 2001)

    Google Scholar 

  22. E.H. Lieb, M. Loss, Stability of a model of relativistic quantum electrodynamics. Comm. Math. Phys. 228, 561–588 (2002)

    Google Scholar 

  23. E.H. Lieb, R. Seiringer, The Stability of Matter in Quantum Mechanics (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  24. E.H. Lieb, J.P. Solovej, Ground state energy of the two-component charged Bose gas. Comm. Math. Phys. 252, 485–534 (2004)

    Google Scholar 

  25. E.H. Lieb, W.E. Thirring, Bound for the kinetic energy of fermions which proves the stability of matter. Phys. Rev. Lett. 35, 687–689 (1975)

    Google Scholar 

  26. E.H. Lieb, H.-T. Yau, The stability and instability of relativistic matter. Comm. Math. Phys. 118, 177–213 (1988)

    Google Scholar 

  27. E.H. Lieb, M. Loss, J.P. Solovej, Stability of matter in magnetic fields. Phys. Rev. Lett. 75, 985–989 (1995)

    Google Scholar 

  28. E.H. Lieb, M. Loss, H. Siedentop, Stability of relativistic matter via Thomas-Fermi theory. Helv. Phys. Acta 69, 974–984 (1996)

    Google Scholar 

  29. E.H. Lieb, H. Siedentop, J.P. Solovej, Stability and instability of relativistic electrons in classical electromagnetic fields. J. Stat. Phys. 89, 37–59 (1997)

    Google Scholar 

  30. M. Loss, H.-T. Yau, Stability of Coulomb systems with magnetic fields, III. Zero energy bound states of the Pauli operator. Comm. Math. Phys. 104, 283–290 (1986)

    Google Scholar 

  31. L. Onsager, Electrostatic interaction of molecules. J. Phys. Chem. 43, 189–196 (1939)

    Google Scholar 

  32. J.P. Solovej, Upper bounds to the ground state energies of the one- and two-component charged Bose gases. Comm. Math. Phys. 266(3), 797–818 (2006)

    Google Scholar 

  33. H. Spohn, Dynamics of Charged Particles and Their Radiation Field (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

Download references

Acknowledgement

Many thanks to the organizers for the invitation to give these lectures and in particular to A. Giuliani for the financial support through the ERC starting grant CoMboS-239694.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Philip Solovej .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Solovej, J.P. (2012). Quantum Coulomb Gases. In: Quantum Many Body Systems. Lecture Notes in Mathematics(), vol 2051. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29511-9_3

Download citation

Publish with us

Policies and ethics