Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 856))

  • 3293 Accesses

Abstract

The way to model many processes for kinetic Monte Carlo simulations is straightforward. There are however also processes that one encounters regularly and for which there are more modeling options and for which the best is not always clear. We discuss here several of them. We look at how to handle site blocking by large adsorbates and other cases with strong repulsion. We show several ways to implement finite lateral interactions. Fast diffusion and other fast processes are shown to be not necessarily a hindrance for efficient simulations. Some fast processes can even be combined with slower processes in one effective process. Tagging adsorbates is introduced to simulate isotope experiments and to obtain information on diffusion. Our two-dimensional modeling framework is shown to be capable to deal with simulating reactions on nanoparticles. Non-physical processes are shown to be useful to create the initial configuration of a kinetic Monte Carlo simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.G.M. Hermse, A.P.J. Jansen, in Catalysis, vol. 19, ed. by J.J. Spivey, K.M. Dooley (Royal Society of Chemistry, London, 2006)

    Google Scholar 

  2. J.N. Murrell, S. Carter, P. Huxley, S.C. Farantos, A.J.C. Varandas, Molecular Potential Energy Functions (Wiley-Interscience, Chichester, 1984)

    Google Scholar 

  3. A. van der Walle, G. Ceder, J. Phase Equilibria, 23, 348 (2002)

    Article  Google Scholar 

  4. V. Blum, A. Zunger, Phys. Rev. B 69, 020103(R) (2004)

    Article  ADS  Google Scholar 

  5. A.P.J. Jansen, W.K. Offermans, in Computational Science and Its Applications—ICCSA-2005. LNCS, vol. 3480, ed. by O. Gervasi (Springer, Berlin, 2005)

    Google Scholar 

  6. Y. Zhang, V. Blum, K. Reuter, Phys. Rev. B 75, 235406 (2007)

    Article  ADS  Google Scholar 

  7. D.M. Hawkins, J. Chem. Inf. Comput. Sci. 44, 1 (2004)

    Article  MathSciNet  Google Scholar 

  8. A.P.J. Jansen, C. Popa, Phys. Rev. B 78, 085404 (2008)

    Article  ADS  Google Scholar 

  9. N.A. Zarkevich, D.D. Johnson, Phys. Rev. Lett. 92, 255702 (2004)

    Article  ADS  Google Scholar 

  10. R. Drautz, A. Díaz-Ortiz, Phys. Rev. B 73, 224207 (2006)

    Article  ADS  Google Scholar 

  11. D.E. Nanu, Y. Deng, A.J. Böttger, Phys. Rev. B 74, 014113 (2006)

    Article  ADS  Google Scholar 

  12. T. Mueller, G. Ceder, Phys. Rev. B 80, 024103 (2009)

    Article  ADS  Google Scholar 

  13. T. Mueller, G. Ceder, Phys. Rev. B 82, 184107 (2010)

    Article  ADS  Google Scholar 

  14. Carlos is a general-purpose program, written in C by J.J. Lukkien, for simulating reactions on surfaces that can be represented by regular lattices: an implementation of the First Reaction Method, the Variable Step Size Method, and the Random Selection Method. http://www.win.tue.nl/~johanl/projects/Carlos/

  15. C.G.M. Hermse, A.P. van Bavel, A.P.J. Jansen, L.A.M.M. Barbosa, P. Sautet, R.A. van Santen, J. Phys. Chem. B 108, 11035 (2004)

    Article  Google Scholar 

  16. C.G.M. Hermse, F. Frechard, A.P. van Bavel, J.J. Lukkien, J.W. Niemantsverdriet, R.A. van Santen, A.P.J. Jansen, J. Chem. Phys. 118, 7081 (2003)

    Article  ADS  Google Scholar 

  17. D.R. Mason, R.E. Rudd, A.P. Sutton, Comput. Phys. Commun. 160, 140 (2004)

    Article  ADS  Google Scholar 

  18. J.H. Larsen, I. Chorkendorff, Surf. Sci. Rep. 35, 163 (2000)

    Article  Google Scholar 

  19. I.M. Ciobîcã, F. Frechard, A.P.J. Jansen, R.A. van Santen, in Studies in Surfaces Science and Catalysis, vol. 133, ed. by G.F. Froment, K.C. Waugh (Elsevier, Amsterdam, 2001), pp. 221–228

    Google Scholar 

  20. I.M. Ciobîcã, F. Frechard, C.G.M. Hermse, A.P.J. Jansen, R.A. van Santen, in Surface Chemistry and Catalysis, ed. by A.F. Carley, P.R. Davies, G.J. Hutchings, M.S. Spencer (Kluwer Academic/Plenum, New York, 2001)

    Google Scholar 

  21. J.M. Thomas, W.J. Thomas, Principles and Practice of Heterogeneous Catalysis (VCH, Weinheim, 1997)

    Google Scholar 

  22. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes. The Art of Scientific Computing (Cambridge University Press, Cambridge, 1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. J. Jansen .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jansen, A.P.J. (2012). Modeling Surface Reactions II. In: An Introduction to Kinetic Monte Carlo Simulations of Surface Reactions. Lecture Notes in Physics, vol 856. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29488-4_6

Download citation

Publish with us

Policies and ethics