Skip to main content

How to Get Kinetic Parameters

  • Chapter

Part of the book series: Lecture Notes in Physics ((LNP,volume 856))

Abstract

This chapter shows how rate constants can either be calculated or be derived from experimental results. Calculating rate constants involves determining the initial and the transition state of a process, the energies of these states, and their partition functions. We show that the general expression for the partition functions can often be simplified when a degree of freedom is a vibration, a rotation, or a free translation. Recipes can be given for how to combine partition functions to get rate constants for processes like Langmuir–Hinshelwood and Eley–Rideal reactions, adsorption and desorption, and diffusion. The phenomenological or macroscopic equation is the essential equation to get rate constants from experiments. It is shown how to use it for simple desorption, simple and dissociative adsorption, uni- and bimolecular reactions, and diffusion. Lateral interactions can affect rate constants substantially, but because they are relatively weak, special attention needs to be given to the reliability of calculations of these interactions. Cross validation and Bayesian model selection are discussed in relation to the cluster expansion for these interactions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    If one determines the activation energy E act by a linear regression of a set of rate constants at different temperatures, then this energy is not exactly equal to E bar+E zp. This is because the factors \((k_{\mathrm{B}}T/h)(\tilde{Q}^{\ddagger}/\tilde{Q})\) also give a small contribution to E act. See the discussion at the end of Sect. 4.2.2.

  2. 2.

    Strictly speaking this is not always true. There may be a factor in the quantum version that is absent in the classical one, and that is related to the statistics of identical particles. See for example the geometry factor in Eqs. (4.22) and (4.23).

  3. 3.

    There are actually two more factors [7]. There is the partition function of the electronic states Q el and the partition function of the spins of the nuclei Q nucl. We will ignore both. The electronic ground state defines the potential energy of the system, so the partition function is defined only by the summation in Eq. (4.11). As the electronic excitation energies are, except for rare case, much larger than the thermal energy, we get Q el=1. The spin state of the nuclei generally does not change during a reaction. So its partition functions for the transition and initial state cancel in the expression for the rate constant, and can therefore be ignored.

  4. 4.

    Note that below room temperature this expression should not be used for molecular hydrogen. The rotational excitations for this molecule are so high, that the high-temperature approximation only becomes valid at higher temperatures.

  5. 5.

    It may be that there is a very low barrier for diffusion of the adsorbed molecule. In that case the partition function of the initial or transition state will have a 2D translational partition function for the center of mass motion as a factor. See the example of CO desorption in Sect. 4.4.6.

  6. 6.

    Parts of Sect. 4.5.4 have been reprinted with permission from A.P.J. Jansen, C. Popa, Bayesian approach to the calculation of lateral interactions: NO/Rh(111), Phys. Rev. B 78, 085404 (2008). Copyright 2008, American Physical Society.

References

  1. C.G.M. Hermse, F. Frechard, A.P. van Bavel, J.J. Lukkien, J.W. Niemantsverdriet, R.A. van Santen, A.P.J. Jansen, J. Chem. Phys. 118, 7081 (2003)

    Article  ADS  Google Scholar 

  2. R.A. van Santen, J.W. Niemantsverdriet, Chemical Kinetics and Catalysis (Plenum, New York, 1995)

    Google Scholar 

  3. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes. The Art of Scientific Computing (Cambridge University Press, Cambridge, 1989)

    Google Scholar 

  4. D.G. Truhlar, A.D. Isaacson, B.C. Garrett, in Theory of Chemical Reaction Dynamics, Part IV, ed. by M. Baer (CRC Press, Boca Raton, 1985), pp. 65–138

    Google Scholar 

  5. C.S. Tautermann, D.C. Clary, J. Chem. Phys. 122, 134702 (2005)

    Article  ADS  Google Scholar 

  6. C.S. Tautermann, D.C. Clary, Phys. Chem. Chem. Phys. 8, 1437 (2006)

    Article  Google Scholar 

  7. D.A. McQuarrie, Statistical Mechanics (Harper, New York, 1976)

    Google Scholar 

  8. A. Messiah, Quantum Mechanics (North-Holland, Amsterdam, 1961)

    Google Scholar 

  9. H. Goldstein, Classical Mechanics (Addison-Wesley, Amsterdam, 1981)

    Google Scholar 

  10. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, revision b.04. Gaussian, Inc., Pittsburgh, PA (2003)

    Google Scholar 

  11. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1965)

    Google Scholar 

  12. A. Szabo, N.S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (McGraw-Hill, New York, 1982)

    Google Scholar 

  13. D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, London, 2001)

    Google Scholar 

  14. A.R. Leach, Molecular Modelling. Principles and Applications (Longman, Singapore, 1996)

    Google Scholar 

  15. W. Koch, M.C. Holthausen, A Chemist’s Guide to Density Functional Theory (Wiley-VCH, New York, 2000)

    Google Scholar 

  16. C.J. Cramer, Essentials of Computational Chemistry (Wiley, Chichester, 2004)

    Google Scholar 

  17. R.A. van Santen, M. Neurock, Molecular Heterogeneous Catalysis (Wiley-VCH, Weinheim, 2006)

    Book  Google Scholar 

  18. O. Trushin, A. Karim, A. Kara, T.S. Rahman, Phys. Rev. B 72, 115401 (2005)

    Article  ADS  Google Scholar 

  19. K. Sastry, D.D. Johnson, D.E. Goldberg, P. Bellon, Phys. Rev. B 72, 085438 (2005)

    Article  ADS  Google Scholar 

  20. N. Castin, L. Malerba, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 267, 3148 (2009)

    Article  ADS  Google Scholar 

  21. G. Henkelman, H. Jónsson, J. Chem. Phys. 111, 7010 (1999)

    Article  ADS  Google Scholar 

  22. G. Henkelman, G. Jóhannesson, H. Jónsson, in Progress in Theoretical Chemistry and Physics, ed. by S.D. Schwarts (Kluwer Academic, London, 2000)

    Google Scholar 

  23. G. Mills, H. Jónsson, G.K. Schenter, Surf. Sci. 324, 305 (1995)

    Article  ADS  Google Scholar 

  24. C. Popa, W.K. Offermans, R.A. van Santen, A.P.J. Jansen, Phys. Rev. B 74, 155428 (2006)

    Article  ADS  Google Scholar 

  25. C. Popa, R.A. van Santen, A.P.J. Jansen, J. Phys. Chem. C 111, 9839 (2007)

    Article  Google Scholar 

  26. D. Curulla, A.P. van Bavel, J.W. Niemantsverdriet, ChemPhysChem 6, 473 (2005)

    Article  Google Scholar 

  27. A.P. van Bavel, Understanding and quantifying interactions between adsorbates: CO, NO, and N- and O-atoms on Rh(100). Ph.D. thesis, Eindhoven University of Technology, Eindhoven (2005)

    Google Scholar 

  28. C. Popa, A.P. van Bavel, R.A. van Santen, C.F.J. Flipse, A.P.J. Jansen, Surf. Sci. 602, 2189 (2008)

    Article  ADS  Google Scholar 

  29. D.H. Wei, D.C. Skelton, S.D. Kevan, Surf. Sci. 381, 49 (1997)

    Article  ADS  Google Scholar 

  30. J.N. Murrell, S. Carter, P. Huxley, S.C. Farantos, A.J.C. Varandas, Molecular Potential Energy Functions (Wiley-Interscience, Chichester, 1984)

    Google Scholar 

  31. A. van der Walle, G. Ceder, J. Phase Equilibria 23, 348 (2002)

    Article  Google Scholar 

  32. V. Blum, A. Zunger, Phys. Rev. B 69, 020103(R) (2004)

    Article  ADS  Google Scholar 

  33. A.P.J. Jansen, W.K. Offermans, in Computational Science and Its Applications—ICCSA-2005. LNCS, vol. 3480, ed. by O. Gervasi (Springer, Berlin, 2005)

    Google Scholar 

  34. C.G.M. Hermse, A.P.J. Jansen, in Catalysis, vol. 19, ed. by J.J. Spivey, K.M. Dooley (Royal Society of Chemistry, London, 2006)

    Google Scholar 

  35. Y. Zhang, V. Blum, K. Reuter, Phys. Rev. B 75, 235406 (2007)

    Article  ADS  Google Scholar 

  36. D.M. Hawkins, J. Chem. Inf. Comput. Sci. 44, 1 (2004)

    Article  MathSciNet  Google Scholar 

  37. A.P.J. Jansen, C. Popa, Phys. Rev. B 78, 085404 (2008)

    Article  ADS  Google Scholar 

  38. N.A. Zarkevich, D.D. Johnson, Phys. Rev. Lett. 92, 255702 (2004)

    Article  ADS  Google Scholar 

  39. R. Drautz, A. Díaz-Ortiz, Phys. Rev. B 73, 224207 (2006)

    Article  ADS  Google Scholar 

  40. D.E. Nanu, Y. Deng, A.J. Böttger, Phys. Rev. B 74, 014113 (2006)

    Article  ADS  Google Scholar 

  41. T. Mueller, G. Ceder, Phys. Rev. B 80, 024103 (2009)

    Article  ADS  Google Scholar 

  42. E.T. Jaynes, G.L. Bretthorst, Probability Theory: The Logic of Science (Cambridge University Press, Cambridge, 2003)

    Book  Google Scholar 

  43. A. Gelman, J.B. Carlin, H.S. Stern, D.B. Rubin, Bayesian Data Analysis (Chapman & Hall/CRC, Boca Raton, 2003)

    Google Scholar 

  44. D. Sivia, J. Skilling, Data Analysis: A Bayesian Tutorial (Oxford University Press, Oxford, 2006)

    Google Scholar 

  45. B. Hammer, Phys. Rev. B 63, 205423 (2001)

    Article  ADS  Google Scholar 

  46. J.N. Brønsted, Chem. Rev. 5, 231 (1928)

    Article  Google Scholar 

  47. M.G. Evans, M. Polanyi, Trans. Faraday Soc. 34, 11 (1938)

    Article  Google Scholar 

  48. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  49. W. Kohn, L.S. Sham, Phys. Rev. 140, A1133 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  50. R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989)

    Google Scholar 

  51. N.G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981)

    MATH  Google Scholar 

  52. A.P.J. Jansen, Comput. Phys. Commun. 86, 1 (1995)

    Article  ADS  Google Scholar 

  53. A.M. de Jong, J.W. Niemantsverdriet, Surf. Sci. 233, 355 (1990)

    Article  Google Scholar 

  54. J.M. Thomas, W.J. Thomas, Principles and Practice of Heterogeneous Catalysis (VCH, Weinheim, 1997)

    Google Scholar 

  55. G.A. Somorjai, Introduction to Surface Chemistry and Catalysis (Wiley, Chichester, 1993)

    Google Scholar 

  56. R. Becker, Theorie der Wärme (Springer, Berlin, 1985)

    Book  Google Scholar 

  57. A. Cassuto, D.A. King, Surf. Sci. 102, 388 (1981)

    Article  ADS  Google Scholar 

  58. V.P. Zhdanov, Elementary Physicochemical Processes on Solid Surfaces (Plenum, London, 1991)

    Google Scholar 

  59. J. Mai, V.N. Kuzovkov, W. von Niessen, Phys. Rev. E 48, 1700 (1993)

    Article  ADS  Google Scholar 

  60. J. Mai, V.N. Kuzovkov, W. von Niessen, Physica A 203, 298 (1994)

    Article  ADS  Google Scholar 

  61. J. Mai, V.N. Kuzovkov, W. von Niessen, J. Chem. Phys. 100, 6073 (1994)

    Article  ADS  Google Scholar 

  62. E.A. Kotomin, V.N. Kuzovkov, Modern Aspects of Diffusion-Controlled Reactions: Cooperative Phenomena in Bimolecular Processes (Elsevier, Amsterdam, 1996)

    Google Scholar 

  63. O. Kortlüke, V.N. Kuzovkov, W. von Niessen, Chem. Phys. Lett. 275, 85 (1997)

    Article  ADS  Google Scholar 

  64. S. Kirkpatric, C.D. Gelatt Jr., M.P. Vecchi, Science 220, 671 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  65. D.A. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, Reading, 1989)

    MATH  Google Scholar 

  66. H.P. Schwefel, Evolution and Optimum Seeking (Wiley, Chichester, 1995)

    Google Scholar 

  67. Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs (Springer, Berlin, 1999)

    Google Scholar 

  68. W. Banzhaf, P. Nordin, R.E. Keller, F.D. Francone, Genetic Programming: An Introduction (Morgan Kaufmann, San Francisco, 1998)

    Book  MATH  Google Scholar 

  69. D. Corne, M. Dorigo, F. Glover, New Ideas in Optimization (McGraw-Hill, London, 1999)

    Google Scholar 

  70. E. Bonabeau, M. Doriga, G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems (Oxford University Press, New York, 1999)

    MATH  Google Scholar 

  71. A.P.J. Jansen, Phys. Rev. B 69, 035414 (2004)

    Article  ADS  Google Scholar 

  72. M.M.M. Jansen, C.G.M. Hermse, A.P.J. Jansen, Phys. Chem. Chem. Phys. 12, 8053 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. J. Jansen .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jansen, A.P.J. (2012). How to Get Kinetic Parameters. In: An Introduction to Kinetic Monte Carlo Simulations of Surface Reactions. Lecture Notes in Physics, vol 856. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29488-4_4

Download citation

Publish with us

Policies and ethics