Skip to main content

A Stochastic Model for the Description of Surface Reaction Systems

  • Chapter
  • 3408 Accesses

Part of the book series: Lecture Notes in Physics ((LNP,volume 856))

Abstract

The most important concept for surface reactions is the adsorption site. For simple crystal surfaces the adsorption sites form a lattice. Lattices form the basis for the description of surface reactions in kinetic Monte Carlo. We give the definition of a lattice and discuss related concepts like translational symmetry, primitive vectors, unit cells, sublattices, and simple and composite lattices. Labels are introduced to describe the occupation of the adsorption sites. This leads to lattice-gas models. We show how these labels can be used to describe reactions and other surfaces processes and we make a start with showing how they can also be used to model surfaces that are much more complicated than simple crystal surfaces. Kinetic Monte Carlo simulates how the occupation of the sites changes over time. We derive a master equation that gives us probability distributions for what processes can occur and when these processes occur. The derivation is from first principles. Some general mathematical properties of the master equation are discussed and we show how a lattice-gas model simplifies the master equation so that it becomes feasible to use it as a basis for kinetic Monte Carlo simulations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Parts of Sect. 2.2.2 have been reprinted with permission from X.Q. Zhang, A.P.J. Jansen, Kinetic Monte Carlo method for simulation reactions in solutions, Phys. Rev. E 82, 046704 (2010). Copyright 2010, American Physical Society.

References

  1. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987)

    MATH  Google Scholar 

  2. D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, London, 2001)

    Google Scholar 

  3. D.C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  4. A. Zangwill, Physics at Surfaces (Cambridge University Press, Cambridge, 1988)

    Book  Google Scholar 

  5. J.M. Thomas, W.J. Thomas, Principles and Practice of Heterogeneous Catalysis (VCH, Weinheim, 1997)

    Google Scholar 

  6. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt, Rinehart & Winston, New York, 1976)

    Google Scholar 

  7. A.M. de Jong, J.W. Niemantsverdriet, J. Chem. Phys. 101, 10126 (1994)

    Article  Google Scholar 

  8. R. Kose, W.A. Brown, D.A. King, J. Phys. Chem. B 103, 8722 (1999)

    Article  Google Scholar 

  9. M.J.P. Hopstaken, J.W. Niemantsverdriet, J. Chem. Phys. 113, 5457 (2000)

    Article  ADS  Google Scholar 

  10. M.M.M. Jansen, C.G.M. Hermse, A.P.J. Jansen, Phys. Chem. Chem. Phys. 12, 8053 (2010)

    Article  Google Scholar 

  11. C.T. Kao, G.S. Blackman, M.A.V. Hove, G.A. Somorjai, C.M. Chan, Surf. Sci. 224, 77 (1989)

    Article  ADS  Google Scholar 

  12. M. van Hardeveld, Elementary reactions in the catalytic reduction of NO on rhodium surfaces. Ph.D. thesis, Eindhoven University of Technology, Eindhoven (1997)

    Google Scholar 

  13. N.V. Petrova, I.N. Yakovkin, Surf. Sci. 519, 90 (2002)

    Article  ADS  Google Scholar 

  14. S. Dahl, A. Logadottir, R.C. Egeberg, J.H. Larsen, I. Chorkendorff, E. Törnqvist, J.K. Nørskov, Phys. Rev. Lett. 83, 1814 (1999)

    Article  ADS  Google Scholar 

  15. B. Hammer, Phys. Rev. Lett. 83, 3681 (2000)

    Article  ADS  Google Scholar 

  16. M.T.M. Koper, J.J. Lukkien, A.P.J. Jansen, R.A. van Santen, J. Phys. Chem. B 103, 5522 (1999)

    Article  Google Scholar 

  17. R. Imbihl, G. Ertl, Chem. Rev. 95, 697 (1995)

    Article  Google Scholar 

  18. M.M. Slin’ko, N.I. Jaeger, Oscillating Heterogeneous Catalytic Systems. Studies in Surface Science and Catalysis, vol. 86 (Elsevier, Amsterdam, 1994)

    Google Scholar 

  19. R.J. Gelten, A.P.J. Jansen, R.A. van Santen, J.J. Lukkien, J.P.L. Segers, P.A.J. Hilbers, J. Chem. Phys. 108, 5921 (1998)

    Article  ADS  Google Scholar 

  20. V.N. Kuzovkov, O. Kortlüke, W. von Niessen, Phys. Rev. Lett. 83, 1636 (1999)

    Article  ADS  Google Scholar 

  21. O. Kortlüke, V.N. Kuzovkov, W. von Niessen, Phys. Rev. Lett. 83, 3089 (1999)

    Article  ADS  Google Scholar 

  22. M. Gruyters, T. Ali, D.A. King, Chem. Phys. Lett. 232, 1 (1995)

    Article  ADS  Google Scholar 

  23. M. Gruyters, T. Ali, D.A. King, J. Phys. Chem. 100, 14417 (1996)

    Article  Google Scholar 

  24. R. Salazar, A.P.J. Jansen, V.N. Kuzovkov, Phys. Rev. E 69, 031604 (2004)

    Article  ADS  Google Scholar 

  25. A.R. Leach, Molecular Modelling. Principles and Applications (Longman, Singapore, 1996)

    Google Scholar 

  26. N.G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981)

    MATH  Google Scholar 

  27. J.R. Norris, Markov Chains (Cambridge University Press, Cambridge, 1998)

    MATH  Google Scholar 

  28. D.E. Knuth, The Art of Computer Programming, Volume I: Fundamental Algorithms (Addison-Wesley, Reading, 1973)

    Google Scholar 

  29. J.C. Keck, J. Chem. Phys. 32, 1035 (1960)

    Article  MathSciNet  ADS  Google Scholar 

  30. J.C. Keck, Discuss. Faraday Soc. 33, 173 (1962)

    Article  Google Scholar 

  31. J.C. Keck, Adv. Chem. Phys. 13, 85 (1967)

    Article  Google Scholar 

  32. P. Pechukas, in Dynamics of Molecular Collisions, Part B, ed. by W. Miller (Plenum, New York, 1976), pp. 269–322

    Chapter  Google Scholar 

  33. D.G. Truhlar, A.D. Isaacson, B.C. Garrett, in Theory of Chemical Reaction Dynamics, Part IV, ed. by M. Baer (CRC Press, Boca Raton, 1985), pp. 65–138

    Google Scholar 

  34. W.H. Miller, J. Chem. Phys. 61, 1823 (1974)

    Article  ADS  Google Scholar 

  35. W.H. Miller, J. Chem. Phys. 62, 1899 (1975)

    Article  ADS  Google Scholar 

  36. G.A. Voth, J. Phys. Chem. 97, 8365 (1993)

    Article  Google Scholar 

  37. V.A. Benderskii, D.E. Makarov, C.A. Wight, Adv. Chem. Phys. 88, 1 (1994)

    Article  Google Scholar 

  38. R.S. Berry, R. Breitengraser-Kunz, Phys. Rev. Lett. 74, 3951 (1995)

    Article  ADS  Google Scholar 

  39. R.E. Kunz, R.S. Berry, J. Chem. Phys. 103, 1904 (1995)

    Article  ADS  Google Scholar 

  40. K.J. Laidler, Chemical Kinetics (Harper & Row, New York, 1987)

    Google Scholar 

  41. A.P.J. Jansen, Comput. Phys. Comm. 86, 1 (1995)

    Article  ADS  Google Scholar 

  42. R.J. Gelten, R.A. van Santen, A.P.J. Jansen, in Molecular Dynamics: From Classical to Quantum Methods, ed. by P.B. Balbuena, J.M. Seminario (Elsevier, Amsterdam, 1999), pp. 737–784

    Chapter  Google Scholar 

  43. A.P.J. Jansen, An introduction to Monte Carlo simulations of surface reactions. http://arxiv.org/abs/cond-mat/0303028 (2003)

  44. I. Prigogine, Introduction to Thermodynamics of Irreversible Processes (Interscience, New York, 1968)

    Google Scholar 

  45. C. van Vliet, Equilibrium and Non-equilibrium Statistical Mechanics (World Scientific, Singapore, 2008)

    Book  Google Scholar 

  46. P.G. Mezey, Potential Energy Hypersurfaces (Elsevier, Amsterdam, 1987)

    Google Scholar 

  47. D.A. McQuarrie, Statistical Mechanics (Harper, New York, 1976)

    Google Scholar 

  48. R. Becker, Theorie der Wärme (Springer, Berlin, 1985)

    Book  Google Scholar 

  49. A.P.J. Jansen, J. Chem. Phys. 94, 8444 (1991)

    Article  ADS  Google Scholar 

  50. E. Kreyszig, Advanced Engineering Mathematics (Wiley, New York, 1993)

    MATH  Google Scholar 

  51. A.H. Zemanian, Distribution Theory and Transform Analysis (Dover, New York, 1987)

    MATH  Google Scholar 

  52. R.A. van Santen, J.W. Niemantsverdriet, Chemical Kinetics and Catalysis (Plenum, New York, 1995)

    Google Scholar 

  53. G. Henkelman, G. Jóhannesson, H. Jónsson, in Progress in Theoretical Chemistry and Physics, ed. by S.D. Schwarts (Kluwer Academic, London, 2000)

    Google Scholar 

  54. B.C. Garrett, D.G. Truhlar, J. Am. Chem. Soc. 101, 5207 (1979)

    Article  Google Scholar 

  55. B.C. Garrett, D.G. Truhlar, J. Am. Chem. Soc. 102, 2559 (1980)

    Article  Google Scholar 

  56. A.P. van Bavel, Understanding and quantifying interactions between adsorbates: CO, NO, and N- and O-atoms on Rh(100). Ph.D. thesis, Eindhoven University of Technology, Eindhoven (2005)

    Google Scholar 

  57. C. Popa, A.P. van Bavel, R.A. van Santen, C.F.J. Flipse, A.P.J. Jansen, Surf. Sci. 602, 2189 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. J. Jansen .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jansen, A.P.J. (2012). A Stochastic Model for the Description of Surface Reaction Systems. In: An Introduction to Kinetic Monte Carlo Simulations of Surface Reactions. Lecture Notes in Physics, vol 856. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29488-4_2

Download citation

Publish with us

Policies and ethics