Skip to main content

Thermal Regime and Evolution of the Congo Basin as an Intracratonic Basin

  • Chapter
  • First Online:

Part of the book series: Regional Geology Reviews ((RGR))

Abstract

The Congo Basin (CB) lies over a thick (200–250 km) and cold lithosphere: we estimate the present-day surface heat-flow to 40 ± 5 mW m−2, from the BHT temperatures, lithology and porosity recorded in two oil wells and in agreement with the only measurement in this area (44 mW m−2). This value is consistent with the thickness of the lithosphere inferred from seismic tomography, assuming stationary conditions. The paleo-thermal regimes can be constrained by additional information, such as the pressures and temperatures derived from kimberlites studies, the variations of vitrinite reflectance with burial or the reconstructed subsidence history. The pressures and the temperatures derived from kimberlites xenocrysts suggest that the conditions were similar for at least 120 Myr. The long-term subsidence can be interpreted by the thermal relaxation of a thick lithosphere after a Neo-Proterozoic rifting stage (ca. 700–635 Ma) with a thinning factor β = 1.4 and a possible reactivation during the Karoo period (ca. 320 Ma). Because the magnitude of the crustal thinning is small, the past thermal conditions throughout the Phanerozoic were probably not very different from the present-day. Additional short term variations (~20–40 Myr) of the subsidence are interpreted by dynamic subsidence or uplift caused by sublithospheric mantle instabilities at the transition between litho-spheres of different thicknesses. These short term variations should not be associated with significant thermal changes. In order to explain the observed maturation of the vitrinite as well as angular uncomformities on seismic lines, one should assume one or two stages of erosion in the basin, representing at least 4 km of removed material. Heat advection by hydrothermal or volcanic fluids can conversely reduce the magnitude of this erosion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen P, Armitage J (2012) Cratonic basins. In: Tectonics of sedimentary basins. In: Busby C, Azor A (eds) Recent advances. Blackwell Publishing, pp 602–620

    Google Scholar 

  • Armitage JJ, Allen PA (2010) Cratonic basins and the long-term subsidence his- tory of continental interiors. J Geol Soc 167:61–70. doi:10.1144/0016-76492009-108

    Article  Google Scholar 

  • Armitage JJ, Henstock TJ, Minshull TA, Hopper JR (2008) Modelling the composition of melts formed during continental breakup of the Southeast Greenland margin. Earth Planet Sci Lett 269:248–258. doi:10.1016/j.epsl.2008.02.024

    Article  Google Scholar 

  • Armitage JJ, Jaupart C, Fourel L, Allen PA (2013) The instability of continental passive margins and its effect on continental topography and heat flow. J Geophys Res 101:11503–11518. doi:10.1002/jgrb.50097

    Google Scholar 

  • Artemieva IM (2006) Global 1x1 thermal model TC1 for the continental lithosphere: Im- plications for lithosphere secular evolution. Tectonophysics 416:245–277. doi:10.1016/j.tecto.2005.11.022

    Article  Google Scholar 

  • Asaadi N, Ribe NM, Sobouti F (2011) Inferring nonlinear mantle rheology from the shape of the Hawaiian swell. Nature 473:501–504. doi:10.1038/nature09993

    Article  Google Scholar 

  • Batumike J, Griffin W, O’Reilly S (2009) Lithospheric mantle structure and the diamond potential of kimberlites in southern D.R. Congo. Lithos 112S:166–176. doi:10.1016/j.lithos.2009.04.020

    Article  Google Scholar 

  • Boote DRD, Clark-Lowes DD, Traut MW (1998) Palaeozoic petroleum sys- tems of North Africa. Geol Soc Lond Spec Publ 132:7–68. doi:10.1144/GSL.SP.1998.132.01.02

    Article  Google Scholar 

  • Buiter SJ, Steinberger B, Medvedev S, Tetreault JL (2012) Could the mantle have caused subsidence of the Congo Basin? Tectonophysics 514–517:62–80. doi:10.1016/j.tecto.2011.09.024

    Article  Google Scholar 

  • Burnham AK, Sweeney JJ (1989) A chemical kinetic model of vitrinite matu- ration and reflectance. Geochim Cosmochim Acta 53:2649–2657. doi:10.1016/0016-7037(89)90136-1

    Article  Google Scholar 

  • Cahen L (1954) Géologie du Congo Belge. H Vaillant-Carmanne, Liège

    Google Scholar 

  • Cahen L, Lepersonne J (1978) Synthèse des connaissances relatives au groupe (an- ciennement série) de la Lukuga (permien du Zaïre), Ann. Mus. Roy. Afr. Cent., Tervuren (Belgique), série in-8, Sci. Géol., 82, 115–152

    Google Scholar 

  • Cahen L, Ferrand JJ, Haarsma MJ, Lepersonne J, Verbeek T (1959) Description du Sondage de Samba, Ann. Mus. Roy. Congo belge, Tervuren (Belgique), série in-8, Sci. Géol., 29, 210–210

    Google Scholar 

  • Cahen L, Ferrand JJ, Haarsma MJ, Lepersonne J, Verbeek T (1960) Description du Sondage de Dekese, Ann. Mus. Roy. Congo belge, Tervuren (Belgique), série in-8, Sci. Géol., 34, p 115

    Google Scholar 

  • Carr AD (1999) A vitrinite reflectance kinetic model incorporating overpressure re- tardation. Mar Petrol Geol. 16: 355–377. doi:10.1016/S0264-8172(98)00075-0

  • Chapman DS, Pollack HN (1977) Heat Flow And Heat Production In Zambia: Evidence for lithospheric thinning in central Africa. Tectonophysics 41:79–100. doi:10.1016/0040-1951(77)90181-0

    Article  Google Scholar 

  • Conrad CP, Molnar P (1997) The growth of Rayleigh–Taylor-type instabilities in the lithosphere for various rheological and density structures. Geophys J Int 129:95–112. doi:10.1111/j.1365-246X.1997.tb00939.x

    Article  Google Scholar 

  • Crosby AG, Fishwick S, White N (2010) Structure and evolution of the in- tracratonic Congo Basin. Geochem Geophys Geosyst. 11: Q06 010–Q06 010. doi:10.1029/2009GC003014

  • Daly MC, Lawrence SR, Diemu-Tshiband K, Matouana B (1992) Tectonic evolution of the Cuvette Centrale, Zaire. J Geol Soc Lond 149:539–546. doi:10.1144/gsjgs.149.4.0539

    Article  Google Scholar 

  • Downey NJ, Gurnis M (2009) Instantaneous dynamics of the cratonic Congo basin. J Geophys Res Solid Earth. 114: B06401. doi: 10.1029/2008JB006066

  • Durham WB, Mirkovich VV, Heard HC (1987) Thermal diffusivity of igneous rocks at elevated pressure and temperature. J Geophys Res 92:11615–11634. doi:10.1029/JB092iB11p11615

    Article  Google Scholar 

  • Esso Zäire SARL (1981a) Geological completion report. Mbandaka 1, Tech. Rep. un- published report, Esso Zäire SARL

    Google Scholar 

  • Esso Zäire SARL (1981b) Geological completion report. Gilson 1, Tech. Rep. unpub- lished report, Esso Zäire SARL

    Google Scholar 

  • Fishwick S (2010) Surface wave tomography: Imaging of the lithosphere-asthenosphere boundary beneath central and southern Africa? Lithos 120:63–73. doi:10.1016/j.lithos.2010.05.011

    Article  Google Scholar 

  • Goutorbe B, Poort J, Lucazeau F, Raillard S (2011) Global heat flow trends re- solved from multiple geological and geophysical proxies. Geophys J Int 187:1405–1419. doi:10.1111/j.1365-246X.2011.05228.x

    Article  Google Scholar 

  • Guiraud R, Bosworth W, Thierry J, Delplanque A (2005) Phanerozoic geological evolution of Northern and Central Africa: An overview. J Afr Earth Sci 43:83–143. doi:10.1016/j.jafrearsci.2005.07.017

    Article  Google Scholar 

  • Hardebol NJ, Pysklywec RN, Stephenson R (2012) Small-scale convection at a continental back-arc to craton transition: application to the southern Canadian Cordillera. J Geophys Res. 117: B01 408. doi: 10.1029/2011JB008431

  • Heine C, Muller RD, Steinberger B, Torsvik TH (2008) Subsidence in intra- continental basins due to dynamic topography. Phys Earth Planet Inter 171:252–264. doi:10.1016/j.pepi.2008.05.008

    Article  Google Scholar 

  • Huismans R, Beaumont C (2011) Depth-dependent extension, two-stage breakup and cratonic underplating at rifted margins. Nature 473:74–78. doi:10.1038/nature09988

    Article  Google Scholar 

  • James DE, Boyd FR, Schutt D, Bell DR, Carlson RW (2004) Xenolith con- straints on seismic velocities in the upper mantle beneath southern Africa. Geochem Geophys Geosyst. 5: Q01 002. doi: 10.1029/2003GC000551

  • Jaupart C, Mareschal JC (1999) The thermal structure and thickness of continental roots. Lithos 48:93–114. doi:10.1016/S0024-4937(99)00023-7

    Article  Google Scholar 

  • Jaupart C, Molnar P, Cottrell E (2007) Instability of a chemically dense layer heated from below and overlain by a deep less viscous fluid. J Fluid Mech 572:433–469. doi:10.1017/S0022112006003521

    Article  Google Scholar 

  • Jones MQW (1988) Heat flow in the Witwatersrand basin and environs and its signif- icance for the South African shield geotherm and lithosphere thickness. J Geophys Res 93:3234–3260

    Google Scholar 

  • Kadima Kabongo E, Delvaux D, Sebagenzi Ntabwoba Mwene S, Talk L, Kabeya SM (2011a) Structure and geological history of the Congo Basin: an integrated interpretation of gravity, magnetic and reflection seismic data. Basin Res. 23: 499–527. doi: 10.1111/j.1365-2117.2011.00500.x

  • Kadima Kabongo E, Sebagenzi Ntabwoba Mwene S, Lucazeau F (2011b) A Proterozoic-rift origin for the structure and the evolution of the cra- tonic Congo basin. Earth Planet Sci Lett. 304: 240–250. doi: 10.1016/j.epsl.2011.01.037

  • Karner GD (1986) Effects of lithospheric in-plane stress on sedimentary basin stratigra- phy. Tectonics 5:573–588. doi:10.1029/TC005i004p00573

    Article  Google Scholar 

  • King SD, Anderson DL (1998) Edge-driven convection. Earth Planet Sci Lett 160:289–296

    Article  Google Scholar 

  • Lawrence SR, Makazu MM (1988) Zaire’s Central basin: prospectivity outlook. Oil Gas J 86:105–108

    Google Scholar 

  • Lévy F, Jaupart C (2011) Temperature and rheological properties of the mantle beneath the North American craton from an analysis of heat flux and seismic data. J Geophys Res 116(B01):408. doi:10.1029/2010JB007726

    Google Scholar 

  • Lepersonne J (1977) Structure gélogique du bassin intérieur du Zaïre, Bull. Aca. Roy. Bel., Classe des Sciences, Ve série, LXIII, 941–965

    Google Scholar 

  • Linol B (2013) Sedimentology and sequence stratigraphy of the Congo and Kalahari Basins of South-central Africa and their evolution during the formation and Break-up of West Gondwana, Ph.D. thesis. Nelson Mandela Metropolitan University, unpublished

    Google Scholar 

  • Linol B, de Wit M, Barton E, Guillocheau F, de Wit M, Colin J (2013a) Facies analysis, chronostratigraphy and paleo-environmental reconstructions of the Jurassic-Cretaceous sequences of the CB. In: de Wit M, Guillocheau F, Fernandez-Alonso M, Kanda N, Wit MD (eds) The geology and resource potential of the Congo Basin, Chap. 4a, unpublished. Springer, Heidelberg

    Google Scholar 

  • Linol B, de Wit M, Barton E, Guillocheau F, de Wit M, Colin JP (2013b) Carboniferous-Triassic stratigraphy and paleogeography of Karoo-like sequences of the CB. In: de Wit M, Guillocheau F, Fernandez-Alonso M, Kanda N, Wit MD (eds) The geology and resource potential of the Congo Basin, Chap. 3b, unpublished. Springer, Heidelberg

    Google Scholar 

  • Linol B, de Wit MJ, Guillocheau F, Robin C, Dauteuil O (2013c) Multiphase phanerozoic subsidence and uplift history recorded in the CB – A complex successor basin. In: de Wit M, Guillocheau F, Fernandez-Alonso M, Kanda N, Wit MD (eds) The geology and resource potential of the Congo basin, Chap. 6b, unpublished. Springer, Heidelberg

    Google Scholar 

  • Linol B, de Wit MJ, Milani E, Guillocheau F (2013d) New regional correlations between the CB and the Paraná Basin of central West Gondwana. In: de Wit M, Guillocheau F, Fernandez-Alonso M, Kanda N, Wit MD (eds) The geology and resource potential of the Congo Basin, Chap. 7b, unpublished. Springer, Heidelberg

    Google Scholar 

  • Lucazeau F, Le Douaran S (1985) The blanketting effect of sediments in basins formed by extension : a numerical model. Application to the gulf of Lion and the Viking graben. Earth Planet Sci Lett 74:92–102. doi:10.1016/0012-821X(85)90169-4

    Article  Google Scholar 

  • Lucazeau F, Brigaud F, Bouroullec JL (2004) High resolution Heat Flow Density in lower Congo basin from probe measurements, oil exploration data and BSR. Geochem Geophys Geosyst 5:1–24. doi:10.1029/2003GC000644

    Article  Google Scholar 

  • Makhous M, Galushkin YI (2003) Burial history and thermal evolution of the northern and eastern Saharan basins. AAPG Bull 87:1623–1651. doi:10.1306/04300301122

    Article  Google Scholar 

  • Mareschal JC, Jaupart C (2004) Variations of surface heat flow and lithospheric thermal structure beneath the North American craton. Earth Planet Sci Lett 223:65–77. doi:10.1016/j.epsl.2004.04.002

    Article  Google Scholar 

  • McKenzie DP (1978) Some remarks on the development of sedimentary basins. Earth Planet Sci Lett 40:25–32. doi:10.1016/0012-821X(78)90071-7

    Article  Google Scholar 

  • Moresi L, Zhong S, Gurnis M (1996) The accuracy of finite element solutions of Stokes’s flow with strongly varying viscosity. Phys Earth Planet Inter 97:83–94. doi:10.1016/0031-9201(96)03163-9

    Article  Google Scholar 

  • Moucha R, Forte AM (2011) Changes in African topography driven by mantle convection. Nat Geosci 4:707–712. doi:10.1038/ngeo1235

    Article  Google Scholar 

  • Nielsen TK, Hopper JR (2004) From rift to drift: mantle melting during continental breakup, Geochem Geophys Geosyst. 5: Q07 003. doi: 10.1029/2003GC000662

  • Nyblade AA, Pollack HN, Jones DL, Podmore F, Mushayandebvu M (1990) Terrestrial heat flow in East and Southern Africa. J Geophys Res 95:17–371

    Google Scholar 

  • Pagel M, Braun J-J, Disnar JR, Martinez L, Renac C, Vasseur G (1997) Thermal history constraints from studies of organic matter, clay minerals, fluid inclusions, and apatite fission tracks at the Ardeche paleo-margin (BA1 drill hole, GPF Program), France. J Sediment Res 67:235–245. doi:10.1306/D4268540-2B26-11D7-8648000102C1865D

    Google Scholar 

  • Poudjom Djomani YH, O’Reilly SY, Griffin W, Morgan P (2001) The density structure of subcontinental lithosphere through time. Earth Planet Sci Lett 184:605–621. doi:10.1016/S0012-821X(00)00362-9

    Article  Google Scholar 

  • Royden LH, Keen CE (1980) Rifting Process and Thermal Evolution of the Conti- nental Margin of Eastern Canada determined from Subsidence curves. Earth Planet Sci Lett 51:343–361

    Article  Google Scholar 

  • Sachse VF, Delvaux D, Littke R (2012) Petrological and geochemical investiga- tions of potential source rocks of the central Congo Basin, Democratic Republic of Congo. AAPG Bull 96:245–275. doi:10.1306/07121111028

    Article  Google Scholar 

  • Sclater JG, Christie PAF (1980) Continental stretching: an explanation of the post-mid-cretaceous subsidence of the central North Sea basin. J Geophys Res 85:3711–3730. doi:10.1029/JB085iB07p03711

    Article  Google Scholar 

  • Scott DR (1992) Small-scale convection and mantle melting beneath mid-ocean ridges. In: Geophys. Monogr. Ser., vol 71. AGU, Washington, DC, pp 327–352. doi: 10.1029/GM071p0327

  • Sebagenzi MN, Vasseur G, Louis P (1993) First heat flow density determinations from Southeastern Zaire (Central Africa). J Afr Earth Sci 16:413–423. doi:10.1016/0899-5362(93)90100-5

    Article  Google Scholar 

  • Shapiro NM, Ritzwoller MH (2004) Inferring surface heat flux distributions guided by a global seismic model: particular application to Antarctica. Earth Planet Sci Lett 223:213–224. doi:10.1016/j.epsl.2004.04.011

    Article  Google Scholar 

  • Sleep NH (2007) Edge-modulatedstagnant-lid convection and volcanic passive margins. Geochem Geophys Geosyst. 8: Q12 004. doi: 10.1029/2007GC001672

  • Steckler MS, Watts AB (1978) Subsidence of the Atlantic-type continental margin off New York. Earth Planet Sci Lett 41:1–13

    Article  Google Scholar 

  • Ungerer P (1990) State of art of research in kinetic modelling of oil formation. Org Geochem 16:1–25. doi:10.1016/0146-6380(90)90022-R

    Article  Google Scholar 

  • van Wijk J, Baldridge W, van Hunen J, Goes S, Aster R, Coblentz D, Grand S, Ni J (2010) Small-scale convection at the edge of the Colorado Plateau: Im- plications for topography, magmatism, and evolution of Proterozoic lithosphere. Geology 38:611–614. doi:10.1130/G31031.1

    Article  Google Scholar 

  • Watts AB, Zhong S (2000) Observations of flexure and the rheology of oceanic lithosphere. Geophys J Int 142:855–875. doi:10.1046/j.1365-246x.2000.00189.x

    Article  Google Scholar 

  • Xie X, Heller PL (2009) Plate tectonics and basin subsidence history. Geol Soc Am Bull 121:55–64. doi:10.1130/B26398.1

    Google Scholar 

  • Yahi N, Schaefer RG, Littke R (2001) Petroleum generation and accumulation in the Berkine basin, eastern Algeria. Am Assoc Petrol Geol Bull. 85: 1439–1467. http://techplace.datapages.com/data/bulletns/2001/08aug/1439/1439.htm

Download references

Acknowledgements

Marteen De Witt, Robert Harris, Jean Braun and Nicky White are thanked for their constructive remarks and reviews. This is IPGP contribution # 3394.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Lucazeau .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Thermal Model

The thermal evolution is described by the 1D heat equation:

$$ {\mathit{\partial}}_z\left[\lambda \left(z,t\right){\partial}_zT\right]+A\left(z,t\right)=\rho c\left(z,t\right){d}_tT $$
(12.3)

where λ(z, t) is the thermal conductivity at depth z and time t, ρc(z, t) is the specific heat per volume unit and A(z, t) is the heat production. This equation is solved numerically by a finite differences method initially developed by Lucazeau and Le Douaran (Lucazeau and Le Douaran 1985). We use a Lagrangian frame, which allows to describe more easily the sedimentation (by adding nodes), the erosion (by removing nodes) or compaction and extension (by changing the thickness of a cell). The initial conditions assume thermal equilibrium within a 200 km thick lithosphere, with a 40 km thick crust and a 10 km enriched radiogenic upper crust. The upper and and lower boundary conditions are fixed temperatures (20 and 1,350 °C). This corresponds to a surface heat-flow of 43 mW m− 2 and a mantle heat-flow of 16 mW m− 2 (i.e. the upper limit assumed for the north American craton).

The time-dependant equation is solved implicitly, which gives less precision but more stability. In a first stage, we consider the rifting of the lithosphere. Modelled strain rates are typically low and therefore temperatures do not increase significantly due to the upward advection of mantle material, as the mantle cools at the same time as it deforms. This reduces the degree of subsidence during the stretching phase. The strain rate \( \dot{\varepsilon} \) is related to the thinning factor β by:

$$ \beta = exp\left(\dot{\varepsilon}\varDelta t\right) $$
(12.4)

The subsidence of the CB constrains the thinning of the crust to a maximum of about 1.4. If we assume that extension ranges from 700 to 630 Ma, the strain rate is of the order of 10−16s −1.

1.1 Lithosphere Physical Properties

The thermal conductivity of the mantle includes a lattice component λ I , which depends on temperature and pressure, and a radiative component λ r :

$$ {\lambda}_I=4.13\sqrt{\frac{298}{T_{abs}}\left(1+0.032\left({3.2410}^{-5}\left(z-{z}_{crust}\right)+1.14\right)\right)} $$
(12.5)
$$ {\lambda}_r={3.6810}^{-10}{T}_{abs}^3 $$
(12.6)

These expressions are derived from a compilation of literature data (Jaupart and Mareschal 1999).

The thermal conductivity of the crust also depends on the temperature and the thermal conductivity λ 0 measured in laboratory conditions (Durham et al. 1987):

$$ \lambda =2.264-\frac{618.2}{T_{abs}}+{\lambda}_0\left(\frac{355.6}{T_{abs}}-0.3025\right) $$
(12.7)

1.2 Isostasy

We assume Airy-type isostasy, with a constant weight per surface unit at a reference level Z ref in the asthenosphere. The initial state provides the reference weight M 0 assuming that elevation corresponds to the sea-level:

$$ {M}_0={\rho}_c{\displaystyle {\int}_0^c\left(1-\alpha T(z)\right) dz+{\rho}_m{\displaystyle {\int}_c^L\left(1-\alpha T(z)\right) dz+({Z}_{ref}-L){\rho}_{asth}}} $$
(12.8)

where α is the coefficient of thermal expansion, ρ c and ρ m the density of the crust and mantle in laboratory conditions, T L the temperature at the base of the lithosphere and ρ asth  = ρ m (1 − αT L ) the density of asthenosphere.

At each time, the weight M1 is calculated to estimate the subsidence S:

$$ S=\frac{M_1-{M}_0}{\rho_{asth}-{\rho}_w} $$
(12.9)

Sediment physical properties

The porosity varies with depth z:

$$ \phi (z)={\phi}_0 exp\left(\frac{-z}{z_c}\right) $$
(12.10)

where ϕ 0 is the porosity at the surface and z c the compaction length. The thickness of a cell varies accordingly:

$$ \varDelta z=\Delta {z}_0\frac{\left(1-{\phi}_0\right)}{\left(1-\phi (z)\right)} $$
(12.11)

where Δz and Δz 0 are the compacted and decompacted thicknesses of a cell. The thermal conductivity follows a geometric mean in the model:

$$ {\lambda}_{bulk}={\lambda}_{water}^{\phi (z)}{\lambda}_{matrix}^{1-\phi (z)} $$
(12.12)

where λ bulk is the bulk conductivity, λ water  = 0.6 W m−1 K−1 is the conductivity of water, and λ matrix is the conductivity of the rock matrix.

The density (and the specific volumetric heat) follow harmonic means:

$$ {\rho}_{bulk}={\rho}_{water}\phi (z)+{\rho}_{matrix}\left(1-\phi (z)\right) $$
(12.13)

where λ bulk is the bulk density, λ water is the density of water, and λ matrix is the density of the rock matrix.

Appendix 2: Model of Lithospheric Instabilities

To understand how a change in lithosphere thickness at the margins of the Congo Basin will affect subsidence we form an idealised model of viscous flow within a 2-D Cartesian domain. We assume that deformation of the lithosphere and asthenosphere can be effectively captured as a Stokes flow with the Boussinesq approximation. The numerical model is as outlined in Armitage et al. (2008, 2013). The key equation is the momentum balance,

$$ -\frac{\partial {\tau}_{ij}}{\partial {x}_j}+\frac{\partial p}{\partial {x}_i}=\varDelta \rho g{\lambda}_i $$
(12.14)

where τ ij is the deviatoric stress, p is pressure, g is gravity and λ i is a unit vector in the vertical direction. The change in density, Δρ is a function of temperature and melt depletion, F,

$$ \frac{\varDelta \rho }{\rho_0}=\Delta {\rho}_T+\Delta {\rho}_F=\alpha T+\beta F $$
(12.15)

where ρ 0 is the mantle density at the surface, α = 3.3 × 10−5 K−1 is the thermal expansion coefficient and β is the coefficient for change in density due to melt depletion (see below). Melt depletion F is tracked by a parameter X, which is a hypothetical completely compatible trace element. The value of X increases from 1 as melting progresses. The trace element can be related to melt depletion, F, assuming that the melt and solid remain in equilibrium with each other, by a simple mass balance, F = (X − 1)/X . We can then base the initial density variation with depth due to melt depletion on density changes predicted from melting experiments of natural and model rocks. We assume that change in density is a linear function of the removal of melt (Equation 12.15). This allows for β to be calculated from a reference state of melt depletion (Scott 1992),

$$ \beta =\frac{\Delta {\rho}_{ref}{X}_{ref}}{\rho_0\left({X}_{ref}-1\right)} $$
(12.16)

where X ref  = 1.3, which is equivalent to F = 23 %. From the melting of model fertile lherzolite compositions and estimates from natural rocks, complete clynopy-roxene removal occurs at melt depletion of 23 %. This is our reference state of melt depletion, and using Δρref = 34 kg m−3 as estimated for Proterozoic lithosphere (Poudjom Djomani et al. 2001), β = 0.04.

We consider a simple temperature dependent diffusion creep that is a reasonable approximation for the deformation of the Earth based on geological observations (Watts and Zhong 2000). Viscosity is given by,

$$ \eta ={\eta}_0{\eta}_{ref} exp\left(\frac{E}{RT}\right) $$
(12.17)

where E = 120 kJmol−1 (Watts and Zhong 2000). The scaling viscosity, η0 to dimensionalise dimensionless viscosity, is set from the thermal Rayleigh number,

$$ Ra=\frac{\alpha g{\rho}_m\varDelta T{d}^3}{\kappa {\eta}_0}=4.877\times {10}^6 $$
(12.18)

where d = 700 km is the depth to the base of the model; κ = 10− 6 m2 s− 1 is the thermal diffusivity and ΔT = 1,315 K is the temperature difference between the surface and depth d. Using this Rayleigh number, the scaling mantle viscosity is η0 = 1020 Pa s. Finally ηref = 1.129, which is calculated from a reference state (Tref = 1,588 K) such that viscosity η = 1020 Pa s at 200 km depth. The relatively small activation energy is justified by the observation within numerical experiments that a larger activation energy would predict too large a flexural rigidity or too thick an elastic plate near sea-mounts (Watts and Zhong 2000). This rheology is an obvious simplification, but it allows us to explore the general behaviour of the upper mantle with a geologically reasonable viscosity structure.

Appendix 3: Calculation of R o

The calculation of R o is similar to previous studies based on the transformation rate of vitrinite (Burnham and Sweeney 1989; Ungerer 1990); it is assumed that the vitrinite transformation can be described by a set of N independent Arrhenius first-order kinetic reactions:

$$ \frac{d{x}_i}{dt}={A}_i exp\left(\frac{E_i}{R\ {T}_{abs}}\right){x}_i(t) $$
(12.19)

where \( \frac{d{x}_i}{dt} \) is the rate of the ith reaction, A i the Arrhenius frequency factor (s −1), E i the activation energy (kcal/mole), R the gas constant (0.001987 kcal/mole K), T abs the absolute temperature and x i the initial hydrocarbon potential for the it h reaction (mg hydrocarbon/TOC). x i (t) can be determined by integration of the previous equation:

$$ {x}_i(t)={x}_i\left({t}_0\right)\left(1-\mathit{\exp}\left(-{A}_iR\frac{T^2\mathit{\exp}\left(\frac{-{E}_i}{R{T}_{abs}}\right)+{T}_0^2\mathit{\exp}\left(\frac{-{E}_i}{R{T}_{0\ abs}}\right)}{E_i\frac{T-{T}_0}{t-{t}_0}}\right)\right) $$
(12.20)

We have used a spectrum of 15 reactions (46–74 kJ) to determine the transformation rate of vitrinite and then an empirical relationship for the conversion to R o . The effect of pressure, which tends to decrease the R o value for a given heating rate (Carr 1999), has not been included.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lucazeau, F., Armitage, J., Kabongo, É.K. (2015). Thermal Regime and Evolution of the Congo Basin as an Intracratonic Basin. In: de Wit, M., Guillocheau, F., de Wit, M. (eds) Geology and Resource Potential of the Congo Basin. Regional Geology Reviews. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29482-2_12

Download citation

Publish with us

Policies and ethics