Skip to main content

Molecular Biology of Acute Lymphoblastic Leukemia

  • Chapter
  • First Online:

Part of the book series: Principles and Practice ((PRINCIPLES))

Abstract

Acute lymphoblastic leukemia (ALL) is the most common but also the most successfully treated malignancy in children. Current cure rates of approximately 85 % have been reached through multi-agent therapeutic regimens and particularly through risk-stratification enabling therapy individualization. Nevertheless, relapse is still the main cause of treatment failure. Therefore, the main effort is now focused on improving the outcome of high risk ALL subtypes, i.e., Ph + ALL, infant ALL, ALL with MLL gene rearrangements, hypodiploid ALL, some T-ALL subsets, recurrent and refractory leukemia. Recent research using advanced molecular techniques, in particular microarray-based genomic gene expression profiling (GEP) and high resolution single nucleotide polymorphism (SNP) microarray approaches, resulted in the identification of novel genetic factors with a potential impact on ALL classification and treatment. The main goal is now to translate these findings on ALL blast biology and those on pharmacogenetics of patient response to therapy into improved diagnostics, prognostic classification, and treatment of this malignancy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aifantis I, Raetz E, Buonamici S (2008) Molecular pathogenesis of T-cell leukaemia and lymphoma. Nat Rev Immunol 8(5):380–390. doi:10.1038/nri2304

    Article  PubMed  CAS  Google Scholar 

  • Asnafi V, Buzyn A, Le Noir S, Baleydier F, Simon A, Beldjord K, Reman O, Witz F, Fagot T, Tavernier E, Turlure P, Leguay T, Huguet F, Vernant JP, Daniel F, Bene MC, Ifrah N, Thomas X, Dombret H, Macintyre E (2009) NOTCH1/FBXW7 mutation identifies a large subgroup with favorable outcome in adult T-cell acute lymphoblastic leukemia (T-ALL): a Group for research on adult acute lymphoblastic leukemia (GRAALL) study. Blood 113(17):3918–3924. doi:10.1182/blood-2008-10-184069

    Article  PubMed  CAS  Google Scholar 

  • Bardini M, Spinelli R, Bungaro S, Mangano E, Corral L, Cifola I, Fazio G, Giordan M, Basso G, De Rossi G, Biondi A, Battaglia C, Cazzaniga G (2010) DNA copy-number abnormalities do not occur in infant ALL with t(4;11)/MLL-AF4. Leukemia 24(1):169–176. doi:10.1038/leu.2009.203

    Article  PubMed  CAS  Google Scholar 

  • Bene MC, Castoldi G, Knapp W, Ludwig WD, Matutes E, Orfao A, van’t Veer MB (1995) Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leuk: Off J Leuk Soc Am Leuk Res Fund UK 9(10):1783–1786

    Google Scholar 

  • Benedikt A, Baltruschat S, Scholz B, Bursen A, Arrey TN, Meyer B, Varagnolo L, Muller AM, Karas M, Dingermann T, Marschalek R (2011) The leukemogenic AF4-MLL fusion protein causes P-TEFb kinase activation and altered epigenetic signatures. Leukemia 25(1):135–144. doi:10.1038/leu.2010.249

    Article  PubMed  CAS  Google Scholar 

  • Breit TM, Wolvers-Tettero IL, Beishuizen A, Verhoeven MA, van Wering ER, van Dongen JJ (1993) Southern blot patterns, frequencies, and junctional diversity of T-cell receptor-delta gene rearrangements in acute lymphoblastic leukemia. Blood 82(10):3063–3074

    PubMed  CAS  Google Scholar 

  • Cario G, Stanulla M, Fine BM, Teuffel O, Neuhoff NV, Schrauder A, Flohr T, Schafer BW, Bartram CR, Welte K, Schlegelberger B, Schrappe M (2005) Distinct gene expression profiles determine molecular treatment response in childhood acute lymphoblastic leukemia. Blood 105(2):821–826. doi:10.1182/blood-2004-04-1552

    Article  PubMed  CAS  Google Scholar 

  • Cario G, Zimmermann M, Romey R, Gesk S, Vater I, Harbott J, Schrauder A, Moericke A, Izraeli S, Akasaka T, Dyer MJ, Siebert R, Schrappe M, Stanulla M (2010) Presence of the P2RY8-CRLF2 rearrangement is associated with a poor prognosis in non-high-risk precursor B-cell acute lymphoblastic leukemia in children treated according to the ALL-BFM 2000 protocol. Blood 115(26):5393–5397. doi:10.1182/blood-2009-11-256131

    Article  PubMed  CAS  Google Scholar 

  • Cauwelier B, Dastugue N, Cools J, Poppe B, Herens C, De Paepe A, Hagemeijer A, Speleman F (2006) Molecular cytogenetic study of 126 unselected T-ALL cases reveals high incidence of TCRbeta locus rearrangements and putative new T-cell oncogenes. Leukemia 20(7):1238–1244. doi:10.1038/sj.leu.2404243

    Article  PubMed  CAS  Google Scholar 

  • Clappier E, Collette S, Grardel N, Girard S, Suarez L, Brunie G, Kaltenbach S, Yakouben K, Mazingue F, Robert A, Boutard P, Plantaz D, Rohrlich P, van Vlierberghe P, Preudhomme C, Otten J, Speleman F, Dastugue N, Suciu S, Benoit Y, Bertrand Y, Cave H (2010) NOTCH1 and FBXW7 mutations have a favorable impact on early response to treatment, but not on outcome, in children with T-cell acute lymphoblastic leukemia (T-ALL) treated on EORTC trials 58881 and 58951. Leukemia. doi:10.1038/leu.2010.205

  • Coustan-Smith E, Mullighan CG, Onciu M, Behm FG, Raimondi SC, Pei D, Cheng C, Su X, Rubnitz JE, Basso G, Biondi A, Pui CH, Downing JR, Campana D (2009) Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol 10(2):147–156. doi:10.1016/S1470-2045(08)70314-0

    Article  PubMed  CAS  Google Scholar 

  • Dawidowska M, Derwich K, Szczepanski T, Jolkowska J, van der Velden VH, Wachowiak J, Witt M (2006) Pattern of immunoglobulin and T-cell receptor (Ig/TCR) gene rearrangements in Polish pediatric acute lymphoblastic leukemia patients–implications for RQ-PCR-based assessment of minimal residual disease. Leuk Res 30(9):1119–1125

    Article  PubMed  CAS  Google Scholar 

  • Dawidowska M, Jolkowska J, Szczepanski T, Derwich K, Wachowiak J, Witt M (2008) Implementation of the standard strategy for identification of Ig/TCR targets for minimal residual disease diagnostics in B-cell precursor ALL pediatric patients: Polish experience. Arch Immunol Ther Exp (Warsz) 56(6):409–418. doi:10.1007/s00005-008-0045-y

    Article  Google Scholar 

  • De Braekeleer E, Douet-Guilbert N, Rowe D, Bown N, Morel F, Berthou C, Ferec C, De Braekeleer M (2011) ABL1 fusion genes in hematological malignancies: a review. Eur J Haematol 86(5):361–371. doi:10.1111/j.1600-0609.2011.01586.x

    Article  PubMed  Google Scholar 

  • Demarest RM, Ratti F, Capobianco AJ (2008) It’s T-ALL about Notch. Oncogene 27(38):5082–5091. doi:10.1038/onc.2008.222

    Article  PubMed  CAS  Google Scholar 

  • Dik WA, Brahim W, Braun C, Asnafi V, Dastugue N, Bernard OA, van Dongen JJ, Langerak AW, Macintyre EA, Delabesse E (2005) CALM-AF10 + T-ALL expression profiles are characterized by overexpression of HOXA and BMI1 oncogenes. Leukemia 19(11):1948–1957. doi:10.1038/sj.leu.2403891

    Article  PubMed  CAS  Google Scholar 

  • Familiades J, Bousquet M, Lafage-Pochitaloff M, Bene MC, Beldjord K, De Vos J, Dastugue N, Coyaud E, Struski S, Quelen C, Prade-Houdellier N, Dobbelstein S, Cayuela JM, Soulier J, Grardel N, Preudhomme C, Cave H, Blanchet O, Lheritier V, Delannoy A, Chalandon Y, Ifrah N, Pigneux A, Brousset P, Macintyre EA, Huguet F, Dombret H, Broccardo C, Delabesse E (2009) PAX5 mutations occur frequently in adult B-cell progenitor acute lymphoblastic leukemia and PAX5 haploinsufficiency is associated with BCR-ABL1 and TCF3-PBX1 fusion genes: a GRAALL study. Leukemia 23(11):1989–1998. doi:10.1038/leu.2009.135

    Article  PubMed  CAS  Google Scholar 

  • Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC, Behm FG, Pui CH, Downing JR, Gilliland DG, Lander ES, Golub TR, Look AT (2002) Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 1(1):75–87 S1535610802000181 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Flohr T, Schrauder A, Cazzaniga G, Panzer-Grumayer R, van der Velden V, Fischer S, Stanulla M, Basso G, Niggli FK, Schafer BW, Sutton R, Koehler R, Zimmermann M, Valsecchi MG, Gadner H, Masera G, Schrappe M, van Dongen JJ, Biondi A, Bartram CR (2008) Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia

    Google Scholar 

  • Flotho C, Coustan-Smith E, Pei D, Cheng C, Song G, Pui CH, Downing JR, Campana D (2007) A set of genes that regulate cell proliferation predicts treatment outcome in childhood acute lymphoblastic leukemia. Blood 110(4):1271–1277. doi:10.1182/blood-2007-01-068478

    Article  PubMed  CAS  Google Scholar 

  • Ford AM, Fasching K, Panzer-Grumayer ER, Koenig M, Haas OA, Greaves MF (2001) Origins of “late” relapse in childhood acute lymphoblastic leukemia with TEL-AML1 fusion genes. Blood 98(3):558–564

    Article  PubMed  CAS  Google Scholar 

  • Ford AM, Ridge SA, Cabrera ME, Mahmoud H, Steel CM, Chan LC, Greaves M (1993) In utero rearrangements in the trithorax-related oncogene in infant leukaemias. Nature 363(6427):358–360. doi:10.1038/363358a0

    Article  PubMed  CAS  Google Scholar 

  • Gandemer V, Rio AG, de Tayrac M, Sibut V, Mottier S, Ly Sunnaram B, Henry C, Monnier A, Berthou C, Le Gall E, Le Treut A, Schmitt C, Le Gall JY, Mosser J, Galibert MD (2007) Five distinct biological processes and 14 differentially expressed genes characterize TEL/AML1-positive leukemia. BMC Genomics 8:385. doi:10.1186/1471-2164-8-385

    Article  PubMed  Google Scholar 

  • Greaves M (1999) Molecular genetics, natural history and the demise of childhood leukaemia. Eur J Cancer 35(14):1941–1953 S0959-8049(99)00296-8 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Greaves M (2006) Infection, immune responses and the aetiology of childhood leukaemia. Nat Rev Cancer 6(3):193–203. doi:10.1038/nrc1816

    Article  PubMed  CAS  Google Scholar 

  • Greaves MF, Wiemels J (2003) Origins of chromosome translocations in childhood leukaemia. Nat Rev Cancer 3(9):639–649. doi:10.1038/nrc1164

    Article  PubMed  CAS  Google Scholar 

  • Houlston RS (2010) Low-penetrance susceptibility to hematological malignancy. Curr Opin Genet Dev 20(3):245–250. doi:10.1016/j.gde.2010.03.004

    Article  PubMed  CAS  Google Scholar 

  • Hunger SP, Raetz EA, Loh ML, Mullighan CG (2011) Improving outcomes for high-risk ALL: translating new discoveries into clinical care. Pediatr Blood Cancer 56(6):984–993. doi:10.1002/pbc.22996

    Article  PubMed  Google Scholar 

  • Iacobucci I, Lonetti A, Paoloni F, Papayannidis C, Ferrari A, Storlazzi CT, Vignetti M, Cilloni D, Messa F, Guadagnuolo V, Paolini S, Elia L, Messina M, Vitale A, Meloni G, Soverini S, Pane F, Baccarani M, Foa R, Martinelli G (2010) The PAX5 gene is frequently rearranged in BCR-ABL1-positive acute lymphoblastic leukemia but is not associated with outcome. A rep behalf GIMEMA Acute Leuk Work Party. Haematol 95(10):1683–1690. doi:10.3324/haematol.2009.020792

    Google Scholar 

  • Jansen MW, Corral L, van der Velden VH, Panzer-Grumayer R, Schrappe M, Schrauder A, Marschalek R, Meyer C, den Boer ML, Hop WJ, Valsecchi MG, Basso G, Biondi A, Pieters R, van Dongen JJ (2007) Immunobiological diversity in infant acute lymphoblastic leukemia is related to the occurrence and type of MLL gene rearrangement. Leukemia 21(4):633–641

    PubMed  CAS  Google Scholar 

  • Kaatsch P (2010) Epidemiology of childhood cancer. Cancer Treat Rev 36(4):277–285. doi:10.1016/j.ctrv.2010.02.003

    Article  PubMed  Google Scholar 

  • Kang H, Chen IM, Wilson CS, Bedrick EJ, Harvey RC, Atlas SR, Devidas M, Mullighan CG, Wang X, Murphy M, Ar K, Wharton W, Borowitz MJ, Bowman WP, Bhojwani D, Carroll WL, Camitta BM, Reaman GH, Smith MA, Downing JR, Hunger SP, Willman CL (2010) Gene expression classifiers for relapse-free survival and minimal residual disease improve risk classification and outcome prediction in pediatric B-precursor acute lymphoblastic leukemia. Blood 115(7):1394–1405. doi:10.1182/blood-2009-05-218560

    Article  PubMed  CAS  Google Scholar 

  • Knudson AG Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 68(4):820–823

    Article  PubMed  Google Scholar 

  • Konrad M, Metzler M, Panzer S, Ostreicher I, Peham M, Repp R, Haas OA, Gadner H, Panzer-Grumayer ER (2003) Late relapses evolve from slow-responding subclones in t(12;21)-positive acute lymphoblastic leukemia: evidence for the persistence of a preleukemic clone. Blood 101(9):3635–3640. doi:10.1182/blood-2002-10-3252

    Article  PubMed  CAS  Google Scholar 

  • Kraszewska MD, Dawidowska M, Kosmalska M, Sedek L, Grzeszczak W, Szczepanski T, Witt M (2012a) Immunoglobulin/T-cell receptor gene rearrangements in the diagnostic paradigm of pediatric T-cell acute lymphoblastic leukemia patients. Leuk Lymphoma. doi:10.3109/10428194.2011.654338

    PubMed  Google Scholar 

  • Kraszewska MD, Dawidowska M, Larmonie NS, Kosmalska M, Sedek L, Szczepaniak M, Grzeszczak W, Langerak AW, Szczepanski T, Witt M (2011) DNA methylation pattern is altered in childhood T-cell acute lymphoblastic leukemia patients as compared with normal thymic subsets: insights into CpG island methylator phenotype in T-ALL. Leukemia. doi:10.1038/leu.2011.208

  • Kraszewska MD, Dawidowska M, Szczepanski T, Witt M (2012b) T-cell acute lymphoblastic leukaemia: recent molecular biology findings. Br J Haematol 156(3):303–315. doi:10.1111/j.1365-2141.2011.08957.x

    Article  PubMed  CAS  Google Scholar 

  • Langerak AW, Wolvers-Tettero IL, van den Beemd MW, van Wering ER, Ludwig WD, Hahlen K, Necker A, van Dongen JJ (1999) Immunophenotypic and immunogenotypic characteristics of TCRgammadelta + T cell acute lymphoblastic leukemia. Leukemia 13(2):206–214

    Article  PubMed  CAS  Google Scholar 

  • Liedtke M (2010) MLL. Homo sapiens myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila)

    Google Scholar 

  • Malyukova A, Dohda T, von der Lehr N, Akhoondi S, Corcoran M, Heyman M, Spruck C, Grander D, Lendahl U, Sangfelt O (2007) The tumor suppressor gene hCDC4 is frequently mutated in human T-cell acute lymphoblastic leukemia with functional consequences for Notch signaling. Cancer Res 67(12):5611–5616. doi:10.1158/0008-5472.CAN-06-4381

    Article  PubMed  CAS  Google Scholar 

  • Martinelli G, Iacobucci I, Storlazzi CT, Vignetti M, Paoloni F, Cilloni D, Soverini S, Vitale A, Chiaretti S, Cimino G, Papayannidis C, Paolini S, Elia L, Fazi P, Meloni G, Amadori S, Saglio G, Pane F, Baccarani M, Foa R (2009) IKZF1 (Ikaros) deletions in BCR-ABL1-positive acute lymphoblastic leukemia are associated with short disease-free survival and high rate of cumulative incidence of relapse: a GIMEMA AL WP report. J Clin Oncol 27(31):5202–5207. doi:10.1200/JCO.2008.21.6408

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka S, Oike Y, Onoyama I, Iwama A, Arai F, Takubo K, Mashimo Y, Oguro H, Nitta E, Ito K, Miyamoto K, Yoshiwara H, Hosokawa K, Nakamura Y, Gomei Y, Iwasaki H, Hayashi Y, Matsuzaki Y, Nakayama K, Ikeda Y, Hata A, Chiba S, Nakayama KI, Suda T (2008) Fbxw7 acts as a critical fail-safe against premature loss of hematopoietic stem cells and development of T-ALL. Genes Dev 22(8):986–991. doi:10.1101/gad.1621808

    Article  PubMed  CAS  Google Scholar 

  • Meyer C, Kowarz E, Hofmann J, Renneville A, Zuna J, Trka J, Ben Abdelali R, Macintyre E, De Braekeleer E, De Braekeleer M, Delabesse E, de Oliveira MP, Cave H, Clappier E, van Dongen JJ, Balgobind BV, van den Heuvel-Eibrink MM, Beverloo HB, Panzer-Grumayer R, Teigler-Schlegel A, Harbott J, Kjeldsen E, Schnittger S, Koehl U, Gruhn B, Heidenreich O, Chan LC, Yip SF, Krzywinski M, Eckert C, Moricke A, Schrappe M, Alonso CN, Schafer BW, Krauter J, Lee DA, Zur Stadt U, Te Kronnie G, Sutton R, Izraeli S, Trakhtenbrot L, Lo Nigro L, Tsaur G, Fechina L, Szczepanski T, Strehl S, Ilencikova D, Molkentin M, Burmeister T, Dingermann T, Klingebiel T, Marschalek R (2009) New insights to the MLL recombinome of acute leukemias. Leukemia 23(8):1490–1499. doi:10.1038/leu.2009.33

    Article  PubMed  CAS  Google Scholar 

  • Milano J, McKay J, Dagenais C, Foster-Brown L, Pognan F, Gadient R, Jacobs RT, Zacco A, Greenberg B, Ciaccio PJ (2004) Modulation of notch processing by gamma-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicol Sci 82(1):341–358. doi:10.1093/toxsci/kfh254

    Article  PubMed  CAS  Google Scholar 

  • Mullighan CG (2009) Genomic analysis of acute leukemia. Int J Lab Hematol 31(4):384–397. doi:10.1111/j.1751-553X.2009.01167.x

    Article  PubMed  CAS  Google Scholar 

  • Mullighan CG (2010) Genetic variation and the risk of acute lymphoblastic leukemia. Leuk Res 34(10):1269–1270. doi:10.1016/j.leukres.2010.05.013

    Article  PubMed  Google Scholar 

  • Mullighan CG, Downing JR (2009a) Genome-wide profiling of genetic alterations in acute lymphoblastic leukemia: recent insights and future directions. Leukemia 23(7):1209–1218. doi:10.1038/leu.2009.18

    Article  PubMed  CAS  Google Scholar 

  • Mullighan CG, Downing JR (2009b) Global genomic characterization of acute lymphoblastic leukemia. Semin Hematol 46(1):3–15. doi:10.1053/j.seminhematol.2008.09.005

    Article  PubMed  CAS  Google Scholar 

  • Mullighan CG, Su X, Zhang J, Radtke I, Phillips LA, Miller CB, Ma J, Liu W, Cheng C, Schulman BA, Harvey RC, Chen IM, Clifford RJ, Carroll WL, Reaman G, Bowman WP, Devidas M, Gerhard DS, Yang W, Relling MV, Shurtleff SA, Campana D, Borowitz MJ, Pui CH, Smith M, Hunger SP, Willman CL, Downing JR (2009a) Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med 360(5):470–480. doi:10.1056/NEJMoa0808253

    Article  PubMed  CAS  Google Scholar 

  • Mullighan CG, Zhang J, Harvey RC, Collins-Underwood JR, Schulman BA, Phillips LA, Tasian SK, Loh ML, Su X, Liu W, Devidas M, Atlas SR, Chen IM, Clifford RJ, Gerhard DS, Carroll WL, Reaman GH, Smith M, Downing JR, Hunger SP, Willman CL (2009b) JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc Natl Acad Sci U S A 106(23):9414–9418. doi:10.1073/pnas.0811761106

    Article  PubMed  CAS  Google Scholar 

  • Nachman JB, Heerema NA, Sather H, Camitta B, Forestier E, Harrison CJ, Dastugue N, Schrappe M, Pui CH, Basso G, Silverman LB, Janka-Schaub GE (2007) Outcome of treatment in children with hypodiploid acute lymphoblastic leukemia. Blood 110(4):1112–1115. doi:10.1182/blood-2006-07-038299

    Article  PubMed  CAS  Google Scholar 

  • O’Neil J, Grim J, Strack P, Rao S, Tibbitts D, Winter C, Hardwick J, Welcker M, Meijerink JP, Pieters R, Draetta G, Sears R, Clurman BE, Look AT (2007) FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J Exp Med 204(8):1813–1824. doi:10.1084/jem.20070876

    Article  PubMed  Google Scholar 

  • Pastorczak A, Gorniak P, Sherborne A, Hosking F, Trelinska J, Lejman M, Szczepanski T, Borowiec M, Fendler W, Kowalczyk J, Houlston RS, Mlynarski W (2011) Role of 657del5 NBN mutation and 7p12.2 (IKZF1), 9p21 (CDKN2A), 10q21.2 (ARID5B) and 14q11.2 (CEBPE) variation and risk of childhood ALL in the Polish population. Le. Leuk Res 35(11):1534–1536. doi:10.1016/j.leukres.2011.07.034

    Article  PubMed  CAS  Google Scholar 

  • Piccaluga PP, Paolini S, Martinelli G (2007) Tyrosine kinase inhibitors for the treatment of Philadelphia chromosome-positive adult acute lymphoblastic leukemia. Cancer 110(6):1178–1186. doi:10.1002/cncr.22881

    Article  PubMed  CAS  Google Scholar 

  • Pieters R, Schrappe M, De Lorenzo P, Hann I, De Rossi G, Felice M, Hovi L, LeBlanc T, Szczepanski T, Ferster A, Janka G, Rubnitz J, Silverman L, Stary J, Campbell M, Li CK, Mann G, Suppiah R, Biondi A, Vora A, Valsecchi MG (2007) A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet 370(9583):240–250. doi:10.1016/S0140-6736(07)61126-X

    Article  PubMed  CAS  Google Scholar 

  • Pongers-Willemse MJ, Seriu T, Stolz F, d’Aniello E, Gameiro P, Pisa P, Gonzalez M, Bartram CR, Panzer-Grumayer ER, Biondi A, San Miguel JF, van Dongen JJ (1999) Primers and protocols for standardized detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets: report of the BIOMED-1 CONCERTED ACTION: investigation of minimal residual disease in acute leukemia. Leukemia 13(1):110–118

    Article  PubMed  CAS  Google Scholar 

  • Prasad RB, Hosking FJ, Vijayakrishnan J, Papaemmanuil E, Koehler R, Greaves M, Sheridan E, Gast A, Kinsey SE, Lightfoot T, Roman E, Taylor M, Pritchard-Jones K, Stanulla M, Schrappe M, Bartram CR, Houlston RS, Kumar R, Hemminki K (2010) Verification of the susceptibility loci on 7p12.2, 10q21.2, and 14q11.2 in precursor B-cell acute lymphoblastic leukemia of childhood. Blood 115(9):1765–1767. doi:10.1182/blood-2009-09-241513

    Google Scholar 

  • Pui CH (2010) Recent research advances in childhood acute lymphoblastic leukemia. J Formos Med Assoc 109(11):777–787. doi:10.1016/S0929-6646(10)60123-4

    Article  PubMed  Google Scholar 

  • Pui CH, Carroll WL, Meshinchi S, Arceci RJ (2011) Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J Clin Oncol 29(5):551–565. doi:10.1200/JCO.2010.30.7405

    Article  PubMed  Google Scholar 

  • Pui CH, Gaynon PS, Boyett JM, Chessells JM, Baruchel A, Kamps W, Silverman LB, Biondi A, Harms DO, Vilmer E, Schrappe M, Camitta B (2002) Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet 359(9321):1909–1915. doi:10.1016/S0140-6736(02)08782-2

    Article  PubMed  Google Scholar 

  • Pui CH, Jeha S (2007) New therapeutic strategies for the treatment of acute lymphoblastic leukaemia. Nat Rev Drug Discov 6(2):149–165. doi:10.1038/nrd2240

    Article  PubMed  CAS  Google Scholar 

  • Real PJ, Tosello V, Palomero T, Castillo M, Hernando E, de Stanchina E, Sulis ML, Barnes K, Sawai C, Homminga I, Meijerink J, Aifantis I, Basso G, Cordon-Cardo C, Ai W, Ferrando A (2009) Gamma-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia. Nat Med 15(1):50–58. doi:10.1038/nm.1900

    Article  PubMed  CAS  Google Scholar 

  • Roman-Gomez J, Jimenez-Velasco A, Agirre X, Prosper F, Heiniger A, Torres A (2005) Lack of CpG island methylator phenotype defines a clinical subtype of T-cell acute lymphoblastic leukemia associated with good prognosis. J Clin Oncol 23(28):7043–7049. doi:10.1200/JCO.2005.01.4944

    Article  PubMed  CAS  Google Scholar 

  • Roman-Gomez J, Jimenez-Velasco A, Castillejo JA, Agirre X, Barrios M, Navarro G, Molina FJ, Calasanz MJ, Prosper F, Heiniger A, Torres A (2004) Promoter hypermethylation of cancer-related genes: a strong independent prognostic factor in acute lymphoblastic leukemia. Blood 104(8):2492–2498. doi:10.1182/blood-2004-03-0954

    Article  PubMed  CAS  Google Scholar 

  • Ross ME, Zhou X, Song G, Shurtleff SA, Girtman K, Williams WK, Liu HC, Mahfouz R, Raimondi SC, Lenny N, Patel A, Downing JR (2003) Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood 102(8):2951–2959. doi:10.1182/blood-2003-01-0338

    Article  PubMed  CAS  Google Scholar 

  • Schafer E, Irizarry R, Negi S, McIntyre E, Small D, Figueroa ME, Melnick A, Brown P (2010) Promoter hypermethylation in MLL-r infant acute lymphoblastic leukemia: biology and therapeutic targeting. Blood 115(23):4798–4809. doi:10.1182/blood-2009-09-243634

    Article  PubMed  CAS  Google Scholar 

  • Schlissel MS (2003) Regulating antigen-receptor gene assembly. Nat Rev Immunol 3(11):890–899. doi:10.1038/nri1225nri1225

    Article  PubMed  CAS  Google Scholar 

  • Schrappe M (2003) Prognostic factors in childhood acute lymphoblastic leukemia. Indian J Pediatr 70(10):817–824

    Article  PubMed  Google Scholar 

  • Schultz KR, Bowman WP, Aledo A, Slayton WB, Sather H, Devidas M, Wang C, Davies SM, Gaynon PS, Trigg M, Rutledge R, Burden L, Jorstad D, Carroll A, Heerema NA, Winick N, Borowitz MJ, Hunger SP, Carroll WL, Camitta B (2009) Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a children’s oncology group study. J Clin Oncol: Off J Am Soc Clin Oncol 27(31):5175–5181. doi:10.1200/JCO.2008.21.2514

    Article  CAS  Google Scholar 

  • Stam RW, Schneider P, Hagelstein JA, van der Linden MH, Stumpel DJ, de Menezes RX, de Lorenzo P, Valsecchi MG, Pieters R (2010) Gene expression profiling-based dissection of MLL translocated and MLL germline acute lymphoblastic leukemia in infants. Blood 115(14):2835–2844. doi:10.1182/blood-2009-07-233049

    Article  PubMed  CAS  Google Scholar 

  • Stumpel DJ, Schneider P, van Roon EH, Boer JM, de Lorenzo P, Valsecchi MG, de Menezes RX, Pieters R, Stam RW (2009) Specific promoter methylation identifies different subgroups of MLL-rearranged infant acute lymphoblastic leukemia, influences clinical outcome, and provides therapeutic options. Blood 114(27):5490–5498. doi:10.1182/blood-2009-06-227660

    Article  PubMed  CAS  Google Scholar 

  • Stumpel DJ, Schotte D, Lange-Turenhout EA, Schneider P, Seslija L, de Menezes RX, Marquez VE, Pieters R, den Boer ML, Stam RW (2011) Hypermethylation of specific microRNA genes in MLL-rearranged infant acute lymphoblastic leukemia: major matters at a micro scale. Leukemia 25(3):429–439. doi:10.1038/leu.2010.282

    Article  PubMed  CAS  Google Scholar 

  • Sutcliffe MJ, Shuster JJ, Sather HN, Camitta BM, Pullen J, Schultz KR, Borowitz MJ, Gaynon PS, Carroll AJ, Heerema NA (2005) High concordance from independent studies by the Children’s Cancer Group (CCG) and Pediatric Oncology Group (POG) associating favorable prognosis with combined trisomies 4, 10, and 17 in children with NCI Standard-Risk B-precursor Acute Lymphoblastic Leukemia: a Children’s Oncology Group (COG) initiative. Leukemia 19(5):734–740. doi:10.1038/sj.leu.2403673

    Article  PubMed  CAS  Google Scholar 

  • Szczepanski T, Harrison CJ, van Dongen JJ (2010) Genetic aberrations in paediatric acute leukaemias and implications for management of patients. Lancet Oncol 11(9):880–889. doi:10.1016/S1470-2045(09)70369-9

    Article  PubMed  CAS  Google Scholar 

  • Szczepanski T, Langerak AW, Wolvers-Tettero IL, Ossenkoppele GJ, Verhoef G, Stul M, Petersen EJ, de Bruijn MA, van’t Veer MB, van Dongen JJ (1998) Immunoglobulin and T cell receptor gene rearrangement patterns in acute lymphoblastic leukemia are less mature in adults than in children: implications for selection of PCR targets for detection of minimal residual disease. Leuk: Off J Leuk Soc Am Leuk Res Fund, UK 12(7):1081–1088

    Article  CAS  Google Scholar 

  • Szczepański T, Pongers-Willemse MJ, Langerak AW, Harts WA, Wijkhuijs AJ, van Wering ER, van Dongen JJ (1999a) Ig heavy chain gene rearrangements in T-cell acute lymphoblastic leukemia exhibit predominant DH6-19 and DH7-27 gene usage, can result in complete V-D-J rearrangements, and are rare in T-cell receptor alpha beta lineage. Blood 93(12):4079–4085

    PubMed  Google Scholar 

  • Szczepański T, Pongers-Willemse MJ, Langerak AW, van Dongen JJ (1999b) Unusual immunoglobulin and T-cell receptor gene rearrangement patterns in acute lymphoblastic leukemias. Curr Top Microbiol Immunol 246:205–213 (discussion 214–205)

    Google Scholar 

  • Szczepański T, van der Velden VH, Raff T, Jacobs DC, van Wering ER, Bruggemann M, Kneba M, van Dongen JJ (2003) Comparative analysis of T-cell receptor gene rearrangements at diagnosis and relapse of T-cell acute lymphoblastic leukemia (T-ALL) shows high stability of clonal markers for monitoring of minimal residual disease and reveals the occurrence of second T-ALL. Leukemia 17(11):2149–2156

    Article  PubMed  Google Scholar 

  • Szczepański T, Willemse MJ, Brinkhof B, van Wering ER, van der Burg M, van Dongen JJ (2002) Comparative analysis of Ig and TCR gene rearrangements at diagnosis and at relapse of childhood precursor-B-ALL provides improved strategies for selection of stable PCR targets for monitoring of minimal residual disease. Blood 99(7):2315–2323

    Article  PubMed  Google Scholar 

  • Szczepański T, Willemse MJ, van Wering ER, van Weerden JF, Kamps WA, van Dongen JJ (2001) Precursor-B-ALL with D(H)-J(H) gene rearrangements have an immature immunogenotype with a high frequency of oligoclonality and hyperdiploidy of chromosome 14. Leukemia 15(9):1415–1423

    Article  PubMed  Google Scholar 

  • Tamai H, Inokuchi K (2010) 11q23/MLL acute leukemia : update of clinical aspects. J Clin Exp Hematop 50(2):91–98 JST.JSTAGE/jslrt/50.91 [pii]

    Article  PubMed  Google Scholar 

  • van der Velden VH, Bruggemann M, Hoogeveen PG, de Bie M, Hart PG, Raff T, Pfeifer H, Luschen S, Szczepanski T, van Wering ER, Kneba M, van Dongen JJ (2004) TCRB gene rearrangements in childhood and adult precursor-B-ALL: frequency, applicability as MRD-PCR target, and stability between diagnosis and relapse. Leukemia 18(12):1971–1980

    Article  PubMed  Google Scholar 

  • van der Velden VH, Szczepanski T, Wijkhuijs JM, Hart PG, Hoogeveen PG, Hop WC, van Wering ER, van Dongen JJ (2003) Age-related patterns of immunoglobulin and T-cell receptor gene rearrangements in precursor-B-ALL: implications for detection of minimal residual disease. Leukemia 17(9):1834–1844

    Article  PubMed  Google Scholar 

  • van der Velden VH, van Dongen JJ (2009) MRD detection in acute lymphoblastic leukemia patients using Ig/TCR gene rearrangements as targets for real-time quantitative PCR. Methods Mol Biol 538:115–150. doi:10.1007/978-1-59745-418-6_7

    Article  PubMed  Google Scholar 

  • van Dongen JJ, Comans-Bitter WM, Wolvers-Tettero IL, Borst J (1990) Development of human T lymphocytes and their thymus-dependency. Thymus 16(3–4):207–234

    PubMed  Google Scholar 

  • van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL, Delabesse E, Davi F, Schuuring E, Garcia-Sanz R, van Krieken JH, Droese J, Gonzalez D, Bastard C, White HE, Spaargaren M, Gonzalez M, Parreira A, Smith JL, Morgan GJ, Kneba M, Macintyre EA (2003) Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 concerted action BMH4-CT98-3936. Leukemia 17(12):2257–2317

    Article  PubMed  Google Scholar 

  • van Dongen JJ, Wolvers-Tettero IL (1991) Analysis of immunoglobulin and T cell receptor genes. Part I: Basic and technical aspects. Clin Chim Acta 198(1–2):1–91

    Article  PubMed  Google Scholar 

  • Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, Harris NL, Le Beau MM, Hellstrom-Lindberg E, Tefferi A, Bloomfield CD (2009) The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 114(5):937–951. doi:10.1182/blood-2009-03-209262

    Article  PubMed  CAS  Google Scholar 

  • Varnum-Finney B, Xu L, Brashem-Stein C, Nourigat C, Flowers D, Bakkour S, Pear WS, Bernstein ID (2000) Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med 6(11):1278–1281. doi:10.1038/81390

    Article  PubMed  CAS  Google Scholar 

  • Waanders E, van der Velden VH, van der Schoot CE, van Leeuwen FN, van Reijmersdal SV, de Haas V, Veerman AJ, van Kessel AG, Hoogerbrugge PM, Kuiper RP, van Dongen JJ (2011) Integrated use of minimal residual disease classification and IKZF1 alteration status accurately predicts 79 % of relapses in pediatric acute lymphoblastic leukemia. Leukemia 25(2):254–258. doi:10.1038/leu.2010.275

    Article  PubMed  CAS  Google Scholar 

  • Weng AP, Ferrando AA, Lee W, Morris JP, Silverman LB, Sanchez-Irizarry C, Blacklow SC, Look AT, Aster JC (2004) Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science (New York, NY) 306(5694):269–271

    Google Scholar 

  • Wilson A, MacDonald HR, Radtke F (2001) Notch 1-deficient common lymphoid precursors adopt a B cell fate in the thymus. J Exp Med 194(7):1003–1012

    Article  PubMed  CAS  Google Scholar 

  • Yang JJ, Cheng C, Yang W, Pei D, Cao X, Fan Y, Pounds SB, Neale G, Trevino LR, French D, Campana D, Downing JR, Evans WE, Pui CH, Devidas M, Bowman WP, Camitta BM, Willman CL, Davies SM, Borowitz MJ, Carroll WL, Hunger SP, Relling MV (2009) Genome-wide interrogation of germline genetic variation associated with treatment response in childhood acute lymphoblastic leukemia. JAMA 301(4):393–403. doi:10.1001/jama.2009.7

    Article  PubMed  CAS  Google Scholar 

  • Yeoh EJ, Ross ME, Shurtleff SA, Williams WK, Patel D, Mahfouz R, Behm FG, Raimondi SC, Relling MV, Patel A, Cheng C, Campana D, Wilkins D, Zhou X, Li J, Liu H, Pui CH, Evans WE, Naeve C, Wong L, Downing JR (2002) Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1(2):133–143 S1535610802000326 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Zuurbier L, Homminga I, Calvert V, Winkel MT, Buijs-Gladdines JG, Kooi C, Smits WK, Sonneveld E, Veerman AJ, Kamps WA, Horstmann M, Petricoin EF, 3rd, Pieters R, Meijerink JP (2010) NOTCH1 and/or FBXW7 mutations predict for initial good prednisone response but not for improved outcome in pediatric T-cell acute lymphoblastic leukemia patients treated on DCOG or COALL protocols. Leukemia. doi:10.1038/leu.2010.204

Download references

Acknowledgments

This chapter was partly supported by the Ministry of Science and Higher Education, grant N N407 311 839.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata Dawidowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dawidowska, M., Kraszewska, M.D., Derwich, K., Szczepański, T. (2012). Molecular Biology of Acute Lymphoblastic Leukemia. In: Witt, M., Dawidowska, M., Szczepanski, T. (eds) Molecular Aspects of Hematologic Malignancies. Principles and Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29467-9_1

Download citation

Publish with us

Policies and ethics