Skip to main content

Hydrogen Transport Under Impermeable Boundary Conditions

  • Chapter
  • First Online:
Electrochemistry of Insertion Materials for Hydrogen and Lithium

Part of the book series: Monographs in Electrochemistry ((MOEC))

  • 1347 Accesses

Abstract

The hydrogen injection reaction into metals and oxides involves hydrogen absorption, followed by hydrogen diffusion through the bulk electrode. There are two models that describe hydrogen absorption in an alkaline solution: (1) the one-step (direct) mechanism and (2) the two-step mechanisms [1–3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang TH, Pyun SI (1996) An investigation of the hydrogen absorption reaction into, and the hydrogen evolution reaction from, a Pd foil electrode. J Electroanal Chem 414:127–133

    Article  Google Scholar 

  2. Montella C (1999) Discussion on permeation transients in terms of insertion reaction mechanism and kinetics. J Electroanal Chem 465:37–50

    Article  CAS  Google Scholar 

  3. Conway BE, Jerkiewicz G (1993) Thermodynamic and electrode kinetic factors in cathodic hydrogen sorption into metals and its relationship to hydrogen adsorption and poisoning. J Electroanal Chem 357:47–66

    Article  CAS  Google Scholar 

  4. Bockris JOM, McBreen J, Nanis L (1965) The hydrogen evolution kinetics and hydrogen entry into α-iron. J Electrochem Soc 112:1025–1031

    Article  CAS  Google Scholar 

  5. Kim CD, Wilde BE (1971) The kinetics of hydrogen absorption into iron during cathodic hydrogen evolution. J Electrochem Soc 118:202–206

    Article  CAS  Google Scholar 

  6. Hitz C, Lasia A (2002) Determination of the kinetics of the hydrogen evolution reaction by the galvanostatic step technique. J Electroanal Chem 532:133–140

    Article  CAS  Google Scholar 

  7. Bolzán AE (1995) Phenomenological aspects related to the electrochemical behaviour of smooth palladium electrodes in alkaline solutions. J Electroanal Chem 380:127–138

    Article  Google Scholar 

  8. Deng B, Li Y, Wang R, Fang S (1999) Two reduction processes for hydrogen adsorption and absorption at MmNi5-type alloy electrodes. Electrochim Acta 44:2853–2857

    Article  CAS  Google Scholar 

  9. Han JN, Lee JW, Seo M, Pyun SI (2001) Analysis of stresses generated during hydrogen transport through a Pd foil electrode under potential sweep conditions. J Electroanal Chem 506:1–10

    Article  CAS  Google Scholar 

  10. Gamboa SA, Sebastian PJ, Feng F, Geng M, Northwood DO (2002) Cyclic voltammetry investigation of a metal hydride electrode for nickel metal hydride batteries. J Electrochem Soc 149:A137–A139

    Article  CAS  Google Scholar 

  11. Lim C, Pyun SI (1993) Theoretical approach to faradaic admittance of hydrogen absorption reaction on metal membrane electrode. Electrochim Acta 38:2645–2652

    Article  CAS  Google Scholar 

  12. Lim C, Pyun SI (1994) Impedance analysis of hydrogen absorption reaction on Pd membrane electrode in 0.1 M LiOH solution under permeable boundary conditions. Electrochim Acta 39:363–373

    Article  CAS  Google Scholar 

  13. Zhang W, Sridhar Kumar MP, Srinivasan S (1995) Ac impedance studies on metal hydride electrodes. J Electrochem Soc 142:2935–2943

    Article  CAS  Google Scholar 

  14. Yang TH, Pyun SI (1996) Hydrogen absorption and diffusion into and in palladium: ac-impedance analysis under impermeable boundary conditions. Electrochim Acta 41:843–848

    Article  CAS  Google Scholar 

  15. Yang TH, Pyun SI (1996) A study of hydrogen absorption reaction into α- and β-LaNi5Hx porous electrodes by using electrochemical impedance spectroscopy. J Power Sources 62:175–178

    Article  CAS  Google Scholar 

  16. Wang C (1998) Kinetic behavior of metal hydride electrode by means of ac impedance. J Electrochem Soc 145:1801–1812

    Article  CAS  Google Scholar 

  17. Montella C (1999) Review and theoretical analysis of ac–av methods for the investigation of hydrogen insertion I. Diffusion formalism. J Electroanal Chem 462:73–87

    Article  CAS  Google Scholar 

  18. Montella C (2000) Review and theoretical analysis of ac–av methods for the investigation of hydrogen insertion: part II. Entry side impedance, transfer function and transfer impedance formalism. J Electroanal Chem 480:150–165

    Article  CAS  Google Scholar 

  19. Montella C (2000) Review and theoretical analysis of ac–av methods for the investigation of hydrogen insertion: part III. Comparison of entry side impedance, transfer function and transfer impedance methods. J Electroanal Chem 480:166–185

    Article  CAS  Google Scholar 

  20. Yuan X, Xu N (2002) Electrochemical and hydrogen transport kinetic performance of MlNi3.75Co0.65Mn0.4Al0.2 metal hydride electrodes at various temperatures. J Electrochem Soc 149:A407–A413

    Article  CAS  Google Scholar 

  21. Georén P, Hjelm AK, Lindbergh G, Lundqvist A (2003) An electrochemical impedance spectroscopy method applied to porous LiMn2O4 and metal hydride battery electrodes. J Electrochem Soc 150:A234–A241

    Article  Google Scholar 

  22. Haran BS, Popov BN, White RE (1998) Theoretical analysis of metal hydride electrodes: studies on equilibrium potential and exchange current density. J Electrochem Soc 145:4082–4090

    Article  CAS  Google Scholar 

  23. Feng F, Ping X, Zhou Z, Geng M, Han J, Northwood DO (1998) The relationship between equilibrium potential during discharge and hydrogen concentration in a metal hydride electrode. Int J Hydrog Energy 23:599–602

    Article  CAS  Google Scholar 

  24. Conway BE, Wojtowicz J (1992) Time-scales of electrochemical desorption and sorption of H in relation to dimensions and geometries of host metal hydride electrodes. J Electroanal Chem 326:277–297

    Article  CAS  Google Scholar 

  25. Ura H, Nishina T, Uchida I (1995) Electrochemical measurements of single particles of Pd and LaNi5 with a microelectrode technique. J Electroanal Chem 396:169–173

    Article  Google Scholar 

  26. Nishina T, Ura H, Uchida I (1997) Determination of chemical diffusion coefficients in metal hydride particles with a microelectrode technique. J Electrochem Soc 144:1273–1277

    Article  CAS  Google Scholar 

  27. Kim HS, Nishizawa M, Uchida I (1999) Single particle electrochemistry for hydrogen storage alloys, MmNi3.55Co0.75Mn0.4Al0.3. Electrochim Acta 45:483–488

    Article  CAS  Google Scholar 

  28. Feng F, Han J, Geng M, Northwood DO (2000) Study of hydrogen transport in metal hydride electrodes using a novel electrochemical method. J Electroanal Chem 487:111–119

    Article  CAS  Google Scholar 

  29. Kim HS, Itoh T, Nishizawa M, Mohamedi M, Umeda M, Uchida I (2002) Microvoltammetric study of electrochemical properties of a single spherical nickel hydroxide particle. Int J Hydrog Energy 27:295–300

    Article  Google Scholar 

  30. Levi MD, Aurbach D (1999) Frumkin intercalation isotherm – a tool for the description of lithium insertion into host materials: a review. Electrochim Acta 45:167–185

    Article  CAS  Google Scholar 

  31. Tsirlina GA, Levi MD, Petrii OA, Aurbach D (2001) Comparison of equilibrium electrochemical behavior of PdHx and LixMn2O4 intercalation electrodes in terms of sorption isotherms. Electrochim Acta 46:4141–4149

    Article  CAS  Google Scholar 

  32. Lee JW, Pyun SI (2005) Anomalous behaviour of hydrogen extraction from hydride-forming metals and alloys under impermeable boundary conditions. Electrochim Acta 50:1777–1850

    Article  CAS  Google Scholar 

  33. Weppner W, Huggins RA (1977) Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb. J Electrochem Soc 124:1569–1578

    Article  CAS  Google Scholar 

  34. Wen CJ, Boukamp BA, Huggins RA (1976) Thermodynamic and mass transport properties of “LiAl”. J Electrochem Soc 126:2258–2266

    Article  Google Scholar 

  35. Montella C (2002) Discussion of the potential step method for the determination of the diffusion coefficients of guest species in host materials: part I, Influence of charge transfer kinetics and ohmic potential drop. J Electroanal Chem 518:61–83

    Article  CAS  Google Scholar 

  36. Sakai T, Oguro K, Miymura H, Kuriyama N, Kato A, Ishikawa H, Iwakura C (1990) Some factors affecting the cycle lives of LaNi5-based alloy electrodes of hydrogen batteries. J Less Common Met 161:193–202

    Article  CAS  Google Scholar 

  37. Nyikos L, Pajkossy T (1986) Diffusion to fractal surfaces. Electrochim Acta 31:1347–1350

    Article  CAS  Google Scholar 

  38. Pajkossy T (1991) Electrochemistry at fractal surfaces. J Electroanal Chem 300:1–11

    Article  CAS  Google Scholar 

  39. Pajkossy T, Borosy AP, Imre A, Martemyanov SA, Nagy G, Schiller R, Nyikos L (1994) Diffusion kinetics at fractal electrodes. J Electroanal Chem 366:69–73

    Article  CAS  Google Scholar 

  40. Dassas Y, Duby P (1995) Diffusion toward fractal interfaces: potentiostatic, galvanostatic, and linear sweep voltammetric techniques. J Electrochem Soc 142:4175–4180

    Article  CAS  Google Scholar 

  41. Shin HC, Pyun SI, Go JY (2002) A study on the simulated diffusion-limited current transient of a self-affine fractal electrode based upon the scaling property. J Electroanal Chem 531:101–109

    Article  CAS  Google Scholar 

  42. Lee JW, Pyun SI (2005) A study on the potentiostatic current transient and linear sweep voltammogram simulated from fractal intercalation electrode: diffusion coupled with interfacial charge transfer. Electrochim Acta 50:1947–1955

    Article  CAS  Google Scholar 

  43. Go JY, Pyun SI, Hahn YD (2003) A study on ionic diffusion towards self-affine fractal electrode by cyclic voltammetry and atomic force microscopy. J Electroanal Chem 549:49–59

    Article  CAS  Google Scholar 

  44. Kim SW, Pyun SI (2002) Lithium transport through a sol–gel derived LiMn2O4 film electrode: analyses of potentiostatic current transient and linear sweep voltammogram by Monte Carlo simulation. Electrochim Acta 47:2843–2855

    Article  CAS  Google Scholar 

  45. Jung KN, Pyun SI, Kim SW (2003) Thermodynamic and kinetic approaches to lithium intercalation into Li[Ti5/3Li1/3]O4 film electrode. J Power Sources 119–121:637–643

    Article  Google Scholar 

  46. Diard JP, Gorrec L, Montella C (2001) Influence of particle size distribution on insertion processes in composite electrodes. Potential step and EIS theory: part I. Linear diffusion. J Electroanal Chem 499:67–77

    Article  CAS  Google Scholar 

  47. Cui N, Luo JL, Chuang KT (2001) Study of hydrogen Diffusion in α- and β-phase hydrides of Mg2Ni alloy by microelectrode technique. J Electroanal Chem 503:92–98

    Article  CAS  Google Scholar 

  48. Jost W (1960) Diffusion in solids, liquids, gases. Academic, New York

    Google Scholar 

  49. Millet P, Srour M, Faure R, Durand R (2001) A study of the hydrogen absorption and desorption reactions in palladium electrodes using the potential step method. Electrochem Commun 3:478–482

    Article  CAS  Google Scholar 

  50. Shin HC, Pyun SI (1999) An investigation of the electrochemical intercalation of lithium into a Li1−δCoO2 electrode based upon numerical analysis of potentiostatic current transients. Electrochim Acta 44:2235–2244

    Article  CAS  Google Scholar 

  51. Shin HC, Pyun SI (1999) The kinetics of lithium transport through Li1−δCoO2 by theoretical analysis of current transient. Electrochim Acta 45:489–501

    Article  CAS  Google Scholar 

  52. Pyun SI, Han JN, Yang TH (1997) Performance evaluation of LaNi4.7Al0.3 and LaNi5 electrodes used as anodes in nickel/metal hydride secondary batteries by analysis of current transients. J Power Sources 65:9–13

    Article  CAS  Google Scholar 

  53. Lundqvist A, Lindbergh G (1999) Kinetic study of a porous metal hydride electrode. Electrochim Acta 44:2523–2542

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pyun, SI., Shin, HC., Lee, JW., Go, JY. (2012). Hydrogen Transport Under Impermeable Boundary Conditions. In: Electrochemistry of Insertion Materials for Hydrogen and Lithium. Monographs in Electrochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29464-8_4

Download citation

Publish with us

Policies and ethics