Hydrogen Transport Under Impermeable Boundary Conditions

  • Su-Il Pyun
  • Heon-Cheol Shin
  • Jong-Won Lee
  • Joo-Young Go
Part of the Monographs in Electrochemistry book series (MOEC)


The hydrogen injection reaction into metals and oxides involves hydrogen absorption, followed by hydrogen diffusion through the bulk electrode. There are two models that describe hydrogen absorption in an alkaline solution: (1) the one-step (direct) mechanism and (2) the two-step mechanisms [1–3].


Hydrogen Diffusion Hydrogen Evolution Reaction Current Transient Hydrogen Transport Hydrogen Injection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Yang TH, Pyun SI (1996) An investigation of the hydrogen absorption reaction into, and the hydrogen evolution reaction from, a Pd foil electrode. J Electroanal Chem 414:127–133CrossRefGoogle Scholar
  2. 2.
    Montella C (1999) Discussion on permeation transients in terms of insertion reaction mechanism and kinetics. J Electroanal Chem 465:37–50CrossRefGoogle Scholar
  3. 3.
    Conway BE, Jerkiewicz G (1993) Thermodynamic and electrode kinetic factors in cathodic hydrogen sorption into metals and its relationship to hydrogen adsorption and poisoning. J Electroanal Chem 357:47–66CrossRefGoogle Scholar
  4. 4.
    Bockris JOM, McBreen J, Nanis L (1965) The hydrogen evolution kinetics and hydrogen entry into α-iron. J Electrochem Soc 112:1025–1031CrossRefGoogle Scholar
  5. 5.
    Kim CD, Wilde BE (1971) The kinetics of hydrogen absorption into iron during cathodic hydrogen evolution. J Electrochem Soc 118:202–206CrossRefGoogle Scholar
  6. 6.
    Hitz C, Lasia A (2002) Determination of the kinetics of the hydrogen evolution reaction by the galvanostatic step technique. J Electroanal Chem 532:133–140CrossRefGoogle Scholar
  7. 7.
    Bolzán AE (1995) Phenomenological aspects related to the electrochemical behaviour of smooth palladium electrodes in alkaline solutions. J Electroanal Chem 380:127–138CrossRefGoogle Scholar
  8. 8.
    Deng B, Li Y, Wang R, Fang S (1999) Two reduction processes for hydrogen adsorption and absorption at MmNi5-type alloy electrodes. Electrochim Acta 44:2853–2857CrossRefGoogle Scholar
  9. 9.
    Han JN, Lee JW, Seo M, Pyun SI (2001) Analysis of stresses generated during hydrogen transport through a Pd foil electrode under potential sweep conditions. J Electroanal Chem 506:1–10CrossRefGoogle Scholar
  10. 10.
    Gamboa SA, Sebastian PJ, Feng F, Geng M, Northwood DO (2002) Cyclic voltammetry investigation of a metal hydride electrode for nickel metal hydride batteries. J Electrochem Soc 149:A137–A139CrossRefGoogle Scholar
  11. 11.
    Lim C, Pyun SI (1993) Theoretical approach to faradaic admittance of hydrogen absorption reaction on metal membrane electrode. Electrochim Acta 38:2645–2652CrossRefGoogle Scholar
  12. 12.
    Lim C, Pyun SI (1994) Impedance analysis of hydrogen absorption reaction on Pd membrane electrode in 0.1 M LiOH solution under permeable boundary conditions. Electrochim Acta 39:363–373CrossRefGoogle Scholar
  13. 13.
    Zhang W, Sridhar Kumar MP, Srinivasan S (1995) Ac impedance studies on metal hydride electrodes. J Electrochem Soc 142:2935–2943CrossRefGoogle Scholar
  14. 14.
    Yang TH, Pyun SI (1996) Hydrogen absorption and diffusion into and in palladium: ac-impedance analysis under impermeable boundary conditions. Electrochim Acta 41:843–848CrossRefGoogle Scholar
  15. 15.
    Yang TH, Pyun SI (1996) A study of hydrogen absorption reaction into α- and β-LaNi5Hx porous electrodes by using electrochemical impedance spectroscopy. J Power Sources 62:175–178CrossRefGoogle Scholar
  16. 16.
    Wang C (1998) Kinetic behavior of metal hydride electrode by means of ac impedance. J Electrochem Soc 145:1801–1812CrossRefGoogle Scholar
  17. 17.
    Montella C (1999) Review and theoretical analysis of ac–av methods for the investigation of hydrogen insertion I. Diffusion formalism. J Electroanal Chem 462:73–87CrossRefGoogle Scholar
  18. 18.
    Montella C (2000) Review and theoretical analysis of ac–av methods for the investigation of hydrogen insertion: part II. Entry side impedance, transfer function and transfer impedance formalism. J Electroanal Chem 480:150–165CrossRefGoogle Scholar
  19. 19.
    Montella C (2000) Review and theoretical analysis of ac–av methods for the investigation of hydrogen insertion: part III. Comparison of entry side impedance, transfer function and transfer impedance methods. J Electroanal Chem 480:166–185CrossRefGoogle Scholar
  20. 20.
    Yuan X, Xu N (2002) Electrochemical and hydrogen transport kinetic performance of MlNi3.75Co0.65Mn0.4Al0.2 metal hydride electrodes at various temperatures. J Electrochem Soc 149:A407–A413CrossRefGoogle Scholar
  21. 21.
    Georén P, Hjelm AK, Lindbergh G, Lundqvist A (2003) An electrochemical impedance spectroscopy method applied to porous LiMn2O4 and metal hydride battery electrodes. J Electrochem Soc 150:A234–A241CrossRefGoogle Scholar
  22. 22.
    Haran BS, Popov BN, White RE (1998) Theoretical analysis of metal hydride electrodes: studies on equilibrium potential and exchange current density. J Electrochem Soc 145:4082–4090CrossRefGoogle Scholar
  23. 23.
    Feng F, Ping X, Zhou Z, Geng M, Han J, Northwood DO (1998) The relationship between equilibrium potential during discharge and hydrogen concentration in a metal hydride electrode. Int J Hydrog Energy 23:599–602CrossRefGoogle Scholar
  24. 24.
    Conway BE, Wojtowicz J (1992) Time-scales of electrochemical desorption and sorption of H in relation to dimensions and geometries of host metal hydride electrodes. J Electroanal Chem 326:277–297CrossRefGoogle Scholar
  25. 25.
    Ura H, Nishina T, Uchida I (1995) Electrochemical measurements of single particles of Pd and LaNi5 with a microelectrode technique. J Electroanal Chem 396:169–173CrossRefGoogle Scholar
  26. 26.
    Nishina T, Ura H, Uchida I (1997) Determination of chemical diffusion coefficients in metal hydride particles with a microelectrode technique. J Electrochem Soc 144:1273–1277CrossRefGoogle Scholar
  27. 27.
    Kim HS, Nishizawa M, Uchida I (1999) Single particle electrochemistry for hydrogen storage alloys, MmNi3.55Co0.75Mn0.4Al0.3. Electrochim Acta 45:483–488CrossRefGoogle Scholar
  28. 28.
    Feng F, Han J, Geng M, Northwood DO (2000) Study of hydrogen transport in metal hydride electrodes using a novel electrochemical method. J Electroanal Chem 487:111–119CrossRefGoogle Scholar
  29. 29.
    Kim HS, Itoh T, Nishizawa M, Mohamedi M, Umeda M, Uchida I (2002) Microvoltammetric study of electrochemical properties of a single spherical nickel hydroxide particle. Int J Hydrog Energy 27:295–300CrossRefGoogle Scholar
  30. 30.
    Levi MD, Aurbach D (1999) Frumkin intercalation isotherm – a tool for the description of lithium insertion into host materials: a review. Electrochim Acta 45:167–185CrossRefGoogle Scholar
  31. 31.
    Tsirlina GA, Levi MD, Petrii OA, Aurbach D (2001) Comparison of equilibrium electrochemical behavior of PdHx and LixMn2O4 intercalation electrodes in terms of sorption isotherms. Electrochim Acta 46:4141–4149CrossRefGoogle Scholar
  32. 32.
    Lee JW, Pyun SI (2005) Anomalous behaviour of hydrogen extraction from hydride-forming metals and alloys under impermeable boundary conditions. Electrochim Acta 50:1777–1850CrossRefGoogle Scholar
  33. 33.
    Weppner W, Huggins RA (1977) Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb. J Electrochem Soc 124:1569–1578CrossRefGoogle Scholar
  34. 34.
    Wen CJ, Boukamp BA, Huggins RA (1976) Thermodynamic and mass transport properties of “LiAl”. J Electrochem Soc 126:2258–2266CrossRefGoogle Scholar
  35. 35.
    Montella C (2002) Discussion of the potential step method for the determination of the diffusion coefficients of guest species in host materials: part I, Influence of charge transfer kinetics and ohmic potential drop. J Electroanal Chem 518:61–83CrossRefGoogle Scholar
  36. 36.
    Sakai T, Oguro K, Miymura H, Kuriyama N, Kato A, Ishikawa H, Iwakura C (1990) Some factors affecting the cycle lives of LaNi5-based alloy electrodes of hydrogen batteries. J Less Common Met 161:193–202CrossRefGoogle Scholar
  37. 37.
    Nyikos L, Pajkossy T (1986) Diffusion to fractal surfaces. Electrochim Acta 31:1347–1350CrossRefGoogle Scholar
  38. 38.
    Pajkossy T (1991) Electrochemistry at fractal surfaces. J Electroanal Chem 300:1–11CrossRefGoogle Scholar
  39. 39.
    Pajkossy T, Borosy AP, Imre A, Martemyanov SA, Nagy G, Schiller R, Nyikos L (1994) Diffusion kinetics at fractal electrodes. J Electroanal Chem 366:69–73CrossRefGoogle Scholar
  40. 40.
    Dassas Y, Duby P (1995) Diffusion toward fractal interfaces: potentiostatic, galvanostatic, and linear sweep voltammetric techniques. J Electrochem Soc 142:4175–4180CrossRefGoogle Scholar
  41. 41.
    Shin HC, Pyun SI, Go JY (2002) A study on the simulated diffusion-limited current transient of a self-affine fractal electrode based upon the scaling property. J Electroanal Chem 531:101–109CrossRefGoogle Scholar
  42. 42.
    Lee JW, Pyun SI (2005) A study on the potentiostatic current transient and linear sweep voltammogram simulated from fractal intercalation electrode: diffusion coupled with interfacial charge transfer. Electrochim Acta 50:1947–1955CrossRefGoogle Scholar
  43. 43.
    Go JY, Pyun SI, Hahn YD (2003) A study on ionic diffusion towards self-affine fractal electrode by cyclic voltammetry and atomic force microscopy. J Electroanal Chem 549:49–59CrossRefGoogle Scholar
  44. 44.
    Kim SW, Pyun SI (2002) Lithium transport through a sol–gel derived LiMn2O4 film electrode: analyses of potentiostatic current transient and linear sweep voltammogram by Monte Carlo simulation. Electrochim Acta 47:2843–2855CrossRefGoogle Scholar
  45. 45.
    Jung KN, Pyun SI, Kim SW (2003) Thermodynamic and kinetic approaches to lithium intercalation into Li[Ti5/3Li1/3]O4 film electrode. J Power Sources 119–121:637–643CrossRefGoogle Scholar
  46. 46.
    Diard JP, Gorrec L, Montella C (2001) Influence of particle size distribution on insertion processes in composite electrodes. Potential step and EIS theory: part I. Linear diffusion. J Electroanal Chem 499:67–77CrossRefGoogle Scholar
  47. 47.
    Cui N, Luo JL, Chuang KT (2001) Study of hydrogen Diffusion in α- and β-phase hydrides of Mg2Ni alloy by microelectrode technique. J Electroanal Chem 503:92–98CrossRefGoogle Scholar
  48. 48.
    Jost W (1960) Diffusion in solids, liquids, gases. Academic, New YorkGoogle Scholar
  49. 49.
    Millet P, Srour M, Faure R, Durand R (2001) A study of the hydrogen absorption and desorption reactions in palladium electrodes using the potential step method. Electrochem Commun 3:478–482CrossRefGoogle Scholar
  50. 50.
    Shin HC, Pyun SI (1999) An investigation of the electrochemical intercalation of lithium into a Li1−δCoO2 electrode based upon numerical analysis of potentiostatic current transients. Electrochim Acta 44:2235–2244CrossRefGoogle Scholar
  51. 51.
    Shin HC, Pyun SI (1999) The kinetics of lithium transport through Li1−δCoO2 by theoretical analysis of current transient. Electrochim Acta 45:489–501CrossRefGoogle Scholar
  52. 52.
    Pyun SI, Han JN, Yang TH (1997) Performance evaluation of LaNi4.7Al0.3 and LaNi5 electrodes used as anodes in nickel/metal hydride secondary batteries by analysis of current transients. J Power Sources 65:9–13CrossRefGoogle Scholar
  53. 53.
    Lundqvist A, Lindbergh G (1999) Kinetic study of a porous metal hydride electrode. Electrochim Acta 44:2523–2542CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Su-Il Pyun
    • 1
  • Heon-Cheol Shin
    • 2
  • Jong-Won Lee
    • 3
  • Joo-Young Go
    • 4
  1. 1.Dept. Materials Science & Eng. Korea Adv. Inst. of Science and Techn.Jeju National UniversityDaejeonRepublic of Korea
  2. 2.School of Materials Science & Eng.Pusan National Univ.Busan, Geumjeong-guRepublic of Korea
  3. 3.Fuel Cell Research CenterKorea Inst. of Energy ResearchDaejonRepublic of Korea
  4. 4.SB LiMotive Co., LtdGyeonggi-doRepublic of Korea

Personalised recommendations