Skip to main content
  • 3018 Accesses

Zusammenfassung

Bei Patienten mit einem VAD/TAH erfolgt eine Gerinnungsaktivierung v.a. an den nicht endothelen Oberflächen der Systeme. Zudem finden sich am Ventrikel akinetische Zonen mit einer Stase des Blutstromes, besonders im Bereich der Inflow-Kanüle, die eine Entstehung von Thromben begünstigen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Literatur zu 8.1

  • Boyle AJ, Russel SD, Teuteberg JJ et al (2009) Low thromboembolism and pump thrombosis with the HeratMate II left ventricular assist device: analysis of outpatient anticoagulation. J Heart Lung Transplant 28: 881-887

    Article  PubMed  Google Scholar 

  • Casanato A, Sponga S, Pontara E et al (2011). Von Willebrand factor abnormalities in aortic valve stenosis: pathophysiology and impact on bleeding. Thromb and Haemost106: 58-65

    Article  Google Scholar 

  • Chan YC, Valenti D, Mansfield AO, Stansby G. Warfarin (2000) Induced skin necrosis. Br J Surg 87: 266-272

    Article  PubMed  CAS  Google Scholar 

  • Demirozu ZT, Radovancevic R, Hochman LF et al (2011) Arteriovenous malformation and gastrointestinal bleeding in patients with the HeartMate II left ventricular assist device. J Heart Lung Transplant 30(8): 849-853

    PubMed  Google Scholar 

  • Feher G, Feher A, Pusch G et al (2010) Clinical importance of aspirin and clopidrogel resistance World of Cardiol 26: 171-186

    Google Scholar 

  • Gaglia MA, Manoukian SV, Waksman R (2010) Novel antiplatelet therapy. Am Heart J 160: 595-604

    Article  PubMed  CAS  Google Scholar 

  • Geisen U, Heilmann C, Beyersdorf F et al (2008) Non-surgical bleeding in patients with ventricular asist device could be explained by acquired von Willebrand disease. Eur J Cardiothorac Surg 33: 679-684

    Article  PubMed  Google Scholar 

  • Houer R, Mazoyer E, Kirsch M et al (2003) J Resistance to aspirin after external ventricular assist device implantation. Thorac Cardiovasc Surg 126: 1636-1637

    Article  Google Scholar 

  • John R, Kamdar F, Liao K et al (2008) Low thromboembolic risk for patients with the HeartMate II left ventricular assist device. J Thorac Cardiovasc Surg 136: 1318-1323

    Article  PubMed  Google Scholar 

  • Kloviate J, Gustafson F, Mortensen SA, Sander K, Nielsen LB (2009) Severely impaired von Willebrand factor dependent platelet aggregation in patients with a continuous flow left ventricular assist device. J Am Coll Cardiol 53: 2162-2167

    Article  Google Scholar 

  • Koster A, Huebler S, Potapov E et al (2007) Impact of heparin-induced thrombocytopenia on outcome in patients with ventricular assist device support. Single-institution experience in 358 consecutive patients. Ann Thorac Surg 83: 72-76

    Article  PubMed  Google Scholar 

  • Krasopoulos G, Brister SJ, Beattle WS, Elliot RF (2008) Aspirin resistance and risk of cardiovascular morbidity: systematic review and meta-analysis. BJM 336: 195-198

    Article  Google Scholar 

  • Mavrakanas T, Bounameaux H (2011). The potential role of new oral anticoagulants in the prevention and treatment of thromboembolism. Pharmacol Ther 130: 46-58

    Article  PubMed  CAS  Google Scholar 

  • Meyer AL, Malhesa D, Bara C. et al (2010) Auqired von Willebrand syndrome in patients with an axial flow ventricular assist device. Circ Heart Fail 3: 675-681

    Article  PubMed  Google Scholar 

  • Natorska J, Bykoswska K, Hlatwaty M, Marek G, Sadowsky J, Undas A (2011) Increased thrombin generation and platelet activation are associated with deficiency in high molecular weight multimers of von Willebrand factor in patients with moderate to severe aortic stenosis. Heart 97(24):2023-2028, Epub 2011 May 10

    Article  PubMed  CAS  Google Scholar 

  • O’Brien PJ, Mureebe L (2012) Direct thrombin inhibitors. J Cardiovasc Pharmacol Ther 17(1):5-11, Epub 2011 Feb 18

    Article  PubMed  Google Scholar 

  • Otis SA, Zehnder JL (2010) Heparin-induced thrombocytopenia: current status and diagnostic challenges. Am J Hematol 85: 700-706

    Article  PubMed  Google Scholar 

  • Panzer S, Eslam RB, Schneller A et al (2010). Loss of high molecular weight von Wilebrand factor multimers mainly affects platelet aggregation in patients with aortic stenosis. Throb Haemost 103: 408-414

    Article  CAS  Google Scholar 

  • Pouplard C, Gueret P, Fouassier M et al (2007) Prospective evaluation of the »4Ts« score and particle gel immunoassay specific to heparin/PF4 for the diagnosis of heparin-induced thrombocytopenia. J Thromb Haemost 5: 1373-1379

    Article  PubMed  CAS  Google Scholar 

  • Rechner AR (2011) Platelet function testing in clinical diagnostics. Hämostaseologie 31(2): 79-87. Epub 2010 Dec 9

    Article  PubMed  CAS  Google Scholar 

  • Samuels LE, Kohout J, Casanova-Ghosh E et al (2008) Argatroban as a primary or secondary anticoagulant in patients implanted with a ventricular assist device. Ann Thorac Surg 85: 1651-1655

    Article  PubMed  Google Scholar 

  • Savas BS, Asgun F, Oz K, Kuraly E, Tatar H (2007) Warfarin-induced skin necrosis after open heart surgery due to protein S and C deficiency. Heart Vessels 22: 64-66

    Article  Google Scholar 

  • Saxena R, Sharma P (2009) Gastrointestinal angiodysplasia and acquired von Willebrand Syndrome: a review of an enigmatic association. Journal of Coagulation Dysorders 1(1): 11-16

    Google Scholar 

  • Schenk S, El-Banayosy A, Prohaska W. et al (2006) Heparin-induced thrombocytopenia in patients receiving mechanical circulatory support. J Thorac Cardiovas Surg 131: 1373-1381

    Article  Google Scholar 

  • Slaughter MS, Yoshifumi N, John RJ et al (2010) Post-operative heparin may not be required for transitioning patients with a HeartMate II left ventricular assist system to long term warfarin therapy. J Heart Lung Transplant 29: 616-624

    Article  PubMed  Google Scholar 

  • Snoep JD, Hovens MMC, Eikenboom JCJ et al (2007) Clopidrogel responsiveness in patients undergoing percutaneous coronary intervention with stenting: a systematic review and meta-analysis. Am Heart J 154: 221-231

    Article  PubMed  CAS  Google Scholar 

  • Spiess BD (2008) Treating heparin resistance with antithrombin or fresh frozen plasma. Ann Thorac Surg 85: 2153-2160

    Article  PubMed  Google Scholar 

  • Steinlechner B, Dworschak M, Birkenburg B et al (2009) Platelet dysfunction in outpatients with left ventricular assist devices. Ann Thorac Surg87: 131-138

    Article  PubMed  Google Scholar 

  • Uriel N, Pak SW, Jorde U (2010) Acquired von Willebrand syndrome after continuous flow mechanical support contributes to a high prevalece of bleeding during long-term support and at time of transplantation. J Am Coll Cardiol 56: 1207-1213

    Article  PubMed  Google Scholar 

  • Warkentin TE, Greinacher A, Koster A, Lincoff AM (2008) American College of Chest Physicians. Treatment and prevention of heparin-induced thrombocytopenia: American College of Chest Physicians evidence based clinical practice guidelines (8th edition) Chest 133 (6 Suppl.): 340S-380S.

    Article  PubMed  CAS  Google Scholar 

Literatur zu 8.2

  • Affeld K, Grosshauser J, Reiter K, Grosse-Siestrup C, Kertzscher U (2011) How can we achieve infection-resistant percutaneous energy transfer? Artif Organs 35(8):800-806

    Article  PubMed  Google Scholar 

  • Chinn R, Dembitsky W, Eaton L, Chillcott S, Stahovich M et al (2005) Multicenter experience: prevention and management of left ventricular assist device infections. ASAIO J 51(4):461-470

    Article  PubMed  Google Scholar 

  • Dembitsky WP, Tector AJ, Park S, Moskowitz AJ, Gelijns AC et al. (2004) Left ventricular assist device performance with long-term circulatory support: lessons from the REMATCH trial. Ann Thorac Surg 78(6):2123-9

    Article  PubMed  Google Scholar 

  • von Eiff C, Becker K, Machka K, Stammer H, Peters G (2001) Nasal carriage as a source of Staphylococcus aureus bacteremia. Study Group. N Engl J Med 344(1):11-16

    Article  CAS  Google Scholar 

  • Habib G, Hoen B, Tornos P, Thuny F, Prendergast B et al (2009) ESC Committee for Practice Guidelines. Guidelines on the prevention, diagnosis, and treatment of infective endocarditis (new version 2009): the Task Force on the Prevention, Diagnosis, and Treatment of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and the International Society of Chemotherapy (ISC) for Infection and Cancer. Eur Heart J 30(19):2369-2413

    Article  PubMed  Google Scholar 

  • Hannan MM, Husain S, Mattner F, Danziger-Isakov L, Drew RJ et al (2011) International Society for Heart and Lung Transplantation. Working formulation for the standardization of definitions of infections in patients using ventricular assist devices. J Heart Lung Transplant 30(4):375-384

    Article  Google Scholar 

  • Lador A, Nasir H, Mansur N, Sharoni E, Biderman P et al (2012) Antibiotic prophylaxis in cardiac surgery: systematic review and meta-analysis. J Antimicrob Chemother 2011 Nov 13. [Epub ahead of print], 67(3): 541-550

    Article  PubMed  CAS  Google Scholar 

Literatur zu 8.3

  • Ambardekar AV, Buttrick PM (2011) Reverse remodeling with left ventricular assist devices:A review of clinical, cellular and molecular effects. Circ Heart Fail4:224-33

    Article  PubMed  Google Scholar 

  • Baba HA, Wohlschlaeger J ( 2008) Morphological and molecular changes in the myocardium after left ventricular mechanical support. Curr Cardiol Rev4:157-69

    Article  PubMed  CAS  Google Scholar 

  • Birks EJ, Tansley PD, Hardy J et al (2006) Left ventricular assist device and drug therapy for the reversal of heart failure. N Engl J Med355:1873-84

    Article  PubMed  CAS  Google Scholar 

  • Birks E, George RS, Hedger M. et al (2011) Reversal of severe heart failure with a continuous-flow left ventricular assist device and pharmacological therapy. Circulation 118:381-90

    Article  Google Scholar 

  • Birks EJ, Miller LW (2012) Myocardial recovery with use of ventricular assist devices. In: Kormos RL and Miller LW (eds.) Mechanical Circulatory Support. A Companion to Braunwald’s Heart Disease. Elsevier, Philadelphia , p258-71

    Google Scholar 

  • Bruggink AH, van Oostehout MF, de Jonge N et al (2006) Reverse remodeling of the myocardial extacellular matrix after prolonged left ventricular device support follows a biphasic pattern. J Heart lung transplant 25:1091-98

    Article  PubMed  Google Scholar 

  • Dandel M, Weng Y, Sinawski H, Potapov E, Lehmkuhl HB, Hetzer R (2005) Long-term results in patients with idiopathic dilated cardiomyopathy after weaning from left ventricular assist devices. Circulation 112(suppl.):I-37-45.

    Article  Google Scholar 

  • Dandel M, Weng Y, Siniawski H, Potapov E, Drews T et al (2008) Prediction of cardiac stability after weaning from ventricular assist devices in patients with idiopathic dilated cardiomyopathy. Circulation 118[suppl 1]:S94-105

    Article  Google Scholar 

  • Dandel M, Weng Y, Siniawski H. et al (2011) Heart failure reversal by ventricular unloading in patients with chronic cardiomyopathy: criteria for weaning from ventricular assist devices. Eur Heart J;32:1148-60

    Article  PubMed  Google Scholar 

  • Dandel M, Potapov E,-Krabatsch T, Weng Y,-Knosalla C,-Hetzer R (2012) Myokarderholung unter mechanischer Ventrikelentlastung und Entwöhnung vom ventrikulären Unterstützungssystem. Z Herz- Thorax- Gefäßchir DOI 10.1007/s00398-012-0939-1

    Google Scholar 

  • Ferrar DJ, Holmann WR, McBride LR, Kormos RL, Icenogle TB et al (2002) Long-term follow up of Thoratec ventricular assist device bridge-to-recovery patients successfully removed from support after recovery of ventricular function. J Heart Lung Transplant 21(5)516-521

    Article  Google Scholar 

  • George I, Xydas S, Manicini DM. et al (2006) Effect of clenbuterol on cardiac and skeletal muscle function during ventricular assist device support. J Heart Lung Transplant 25:1084-90.

    Article  PubMed  Google Scholar 

  • Hall JL, Fermin DR, Birks EJ et al (2011) Clinical, molecular, and genomic changes in response to left ventricular assist devices. J Am Coll Cardiol 2011 57(6):641-52

    Article  CAS  Google Scholar 

  • Hetzer R, Müller J, Weng Y, et al (1999) Cardiac recovery in dilated cardiomyopathy by unloading with a left ventricular assist device. Ann Thorac Surg 68:742-49

    Article  PubMed  CAS  Google Scholar 

  • Latif N, Yacoub MH, George R. et al (2007) Changes in sarcomeric and non-sarcomeric cytoskeletal proteins and focal adhesion molecules during clinical myocardial recovery after left ventricular assist device support. J Heart Lung transplant 26:230-235

    Article  PubMed  Google Scholar 

  • Müller J, Wallukat G, Weng Y et al (1997) Weaning from mechanical cardiac support in patients with dilated cardiomyopathy. Circulation 96:542-49.

    Article  PubMed  Google Scholar 

  • Oriyanhan W, Tsuneyoshi H, Nishina T. et al (2007) Determination of optimal duration of mechanical unloading for failing hearts to achieve bridge to recovery in a rat heterotopic heart transplantation model. J Heart Transplant 26:16-23

    Article  Google Scholar 

Literatur zu 8.4

  • Allen JG, Weiss ES, Schaffer JM et al (2010) Quality of life and functional status in patients surviving 12 months after left ventricular assist device implantation J Heart Lung Transpl 29:278-285

    Article  Google Scholar 

  • Andrus S, Dubois J, Jansen C et al (2003) Teaching documentation tool: building a successful discharge. Crit Care Nurse 23:39-48

    PubMed  Google Scholar 

  • Bedi M, Kormos R, Winowich S et al (2006) Ventricular arrhythmias during left ventricular assist device support. Am J Cardiol 99:1151-1153

    Article  Google Scholar 

  • Brewer RJ, Lanfear DE, Sai-Sudhakar CB et al (2012) Extremes of body mass index do not impact mid-term survival after continuous-flow left ventricular assist device implantation. J Heart Lung Transpl 31:167-172

    Article  Google Scholar 

  • Butler J, Howser R, Portner PM et al (2005) Body mass index and outcomes after left ventricular assist device placement. Ann Thorac Surg 79:66-73

    Article  PubMed  Google Scholar 

  • Cavanaugh JL, Miyamoto SD, da Cruz E et al (2010) Predicting recovery: Successful explant of a ventricular assist device in a child with dilated cardiomyopathy. J Heart Lung Transpl 29:105-108

    Article  Google Scholar 

  • Choong CK, Pasque MK, Shelton K et al (2005) The beneficial role of left ventricular assist device destination therapy in the reversal of contraindications to cardiac transplantation. J Thorac Cardiovasc Surg 130:879-880

    Article  PubMed  Google Scholar 

  • Crow S, John R, Boyle A et al (2009) Gastrointestinal bleeding rates in recipients of nonpulsatile and pulsatile left ventricular assist devices J Thorac Cardiovasc Surg 137:208-215

    Article  PubMed  CAS  Google Scholar 

  • Dandel M, Wenig Y, Siniawski H et al (2008) Prediction of cardiac stability after weaning from left ventricular assist devices in patients with idiopathic dilated cardiomyopathy. Circulation 118 Suppl 14:S94-105

    Article  Google Scholar 

  • Dang NC, Topkara VK, Kim BT et al (2005) Nutritional status in patients on left ventricular assist device support. J Thor Cardiovasc Surg 130(5):e3-e4

    Article  Google Scholar 

  • de Jonge N, Kirkels H, Lahpor JR et al (2001) Exercise performance in patients with end-stage heart failure after implantation of a left ventricular assist device and after heart transplantation. JACC 37(7):1794-1799

    Article  PubMed  CAS  Google Scholar 

  • El-Banayosy A, Fey O, Sarnowski P et al (2001) Midterm follow-up of patients discharged from hospital under left ventricular assistance. J Heart Lung Transpl 20:53-58

    Article  CAS  Google Scholar 

  • Elhenawy AM, Algarni KD, Rodger M et al (2011) Mechanical circulatory support as a bridge to transplant candidacy. J Card Surg 26:542-547

    Article  PubMed  Google Scholar 

  • Estep JD, Stainback RF, Little SH et al (2010) The role of echocardiography and other imaging modalities in patients with left ventricular assist devices. JACC: Cardiovasc Imaging 3:1049-1064

    Article  Google Scholar 

  • Garatti A, Bruschi G, Colombo T et al (2009) Noncardiac surgical procedures in patient supported with long-term implantable left ventricular assist device. Am J Surg 197:710-714

    Article  PubMed  Google Scholar 

  • George RS, Yacoub MH, Tasca G et al (2007) Hemodynamic and echocardiographic responses to acute interruption of left ventricular assist device support: relevance to assessment of myocardial recovery. J Heart Lung Transpl 26:967-973

    Article  Google Scholar 

  • Gordon RJ, Quagliarello B, Lowy FD (2006) Ventricular assist device-related infections. Lancet Infect Dis 6:426-437

    Article  PubMed  Google Scholar 

  • Grady KL, Meyer P, Mattea A et al (2001) Improvement in quality of life outcomes 2 weeks after left ventricular assist device implantation. J Heart Lung Transpl 20:657-669

    Article  CAS  Google Scholar 

  • Grady KL, Meyer PM, Dressler D et al (2004) Longitudinal change in quality of life and impact on survival after left ventricular assist device implantation. Ann Thorac Surg 77:1321-1327

    Article  PubMed  Google Scholar 

  • Holman WL, Rayburn BK, McGiffin DC et al (2003) Infection in ventricular assist devices: Prevention and treatment. Ann Thorac Surg 75:S48-57

    Article  Google Scholar 

  • Hozayen SM, Soliman AM, Eckman PM (2012) Comparison of two ventricular assist device dressing change protocols. J Heart Lung Transpl 31:108-109

    Article  Google Scholar 

  • James KB, Rodkey S, McCarthy PM et al (1998) Exercise performance and chronotropic response in heart failure patients with implantable left ventricular assist devices. Am J Cardiol 81:1230-1232

    Article  PubMed  CAS  Google Scholar 

  • Jaski BE, Branch KR, Adamson R et al (1993) Exercise hemodynamics during long-term implantation of a left ventricular assist device in patients awaiting heart transplantation. J Am Coll Cardiol 22:1574-1580

    Article  PubMed  CAS  Google Scholar 

  • John R, Lietz K, Schuster M et al (2003) Immunologic sensitization in recipients of left ventricular assist devices. J Thorac Cardiovasc Surg 125:578-591

    Article  PubMed  Google Scholar 

  • Kamiya K, Mezzani A, Masuda T et al (2012) Effects of electrical muscle stimulation in a left ventricular assist device patient. Int J Cardiol Februar 2012 in press, online verfügbar: http://dx.doi. org/10.1016/j.ijcard.2012.01.084

    Google Scholar 

  • Khan T, Delgado RM, Radovancevic B et al (2003) Dobutamine stress echocardiography predicts myocardial improvement in patients supported by left ventricular assist devices (LVADs): hemodynamic and histologic evidence of improvement before LVAD explantation. J Heart Lung Transpl 22:137-146

    Article  Google Scholar 

  • Kiernan MS, Pham DT, DeNofrio D et al (2011) Management of HeartWare left ventricular assist device thrombosis using intracavitary thrombolytics. J Thorac Cardiovasc Surg 142:712-714

    Article  PubMed  Google Scholar 

  • Kohli HS, Canada J, Arena R et al (2011) Exercise blood pressure response during assisted circulatory support: Comparison of the total artificial heart with a left ventricular assist device during rehabilitation. J Heart Lung Transpl 30:1207-1213

    Article  Google Scholar 

  • Kushnir VM, Sharma S, Ewald GA et al (2012) Evaluation of GI bleeding after implantation of left ventricular assist device. Gastrointest Endoscop 75:973-979

    Article  Google Scholar 

  • Lam KM, Ennis S, O’Driscoll G et al (2009) Observations from non-invasive measures of right heart hemodynamics in left ventricular assist device patients. J Am Soc Echocardiogr 22:1055-1062

    Article  PubMed  Google Scholar 

  • Maybaum S, Kamalakannan G, Murthy S (2008) Cardiac recovery during mechanical assist device support. Semin Thorac Cardiovasc Surg 20:234-246

    Article  PubMed  Google Scholar 

  • Maybaum S, Mancini D, Xydas S et al (2007) Cardiac improvement during mechanical circulatory support: a prospective multicenter study of the LVAD Working Group. Circulation 115:2497-2505

    Article  PubMed  Google Scholar 

  • Morales DL, Catanese KA, Helman DN et al (2000) Six-year experience of caring for fourty-four patients with a left ventricular assist device at home: safe, economical, necessary. J Thorac Cardiovasc Surg 119:251-259

    Article  PubMed  CAS  Google Scholar 

  • Morgan JA, Paone G, Nemeh HW et al (2012) Non-cardiac surgery in patients on long-term left ventricular assist device support. J Heart Lung Transpl 31:757-763

    Article  Google Scholar 

  • Pamboukian SV, Tallaj JA, Brown RN et al (2011) Improvement in 2-year survival for ventricular assist device patients after implementation of an intensive surveillance protocol. J Heart Lung Transpl 30:879-887

    Article  Google Scholar 

  • Petrucci RJ, Rogers JG, Blue L et al (2012) Neurocognitoive function in destination therapy patients receiving continuous-flow vs pulsatile-flow left ventricular assist device support. J Heart Lung Transpl 31:27-36

    Article  Google Scholar 

  • Radovancevic B, Vrtovec B, de Kort E et al (2007) End-organ function in patients on long-term circulatory support with continuous- or pulsatile-flow assist devices. J Heart Lung Transpl 26: 815-818

    Article  Google Scholar 

  • Richenbacher WE, Seemuth SC (2001) Hospital discharge for the ventricular assist device patient: historical perspective and description of a successful program. ASAIO J 47:590-595

    Article  PubMed  CAS  Google Scholar 

  • Samuels LE, Holmes Ec, Petrucci R. (2004) Psychosocial and sexual concerns of patients with implantable left ventricular assist devices: a pilot study. J Thorac Cardiovasc Surg 127:1432-1435

    Article  PubMed  Google Scholar 

  • Sandner SE, Zimpfer D, Zrunek P et al (2009) Renal function and outcome after continuous flow left ventricular assist device implantation. Ann Thorac Surg 87:1072-1078

    Article  PubMed  Google Scholar 

  • Stewart GC, Brooks K, Prathibu PP et al (2009) Thresholds of physical activity and life expectancy for patients considering destination ventricular assist devices. J Heart Lung Transpl 28:863-869

    Article  Google Scholar 

  • Tjan TDT, Asfour B, Hammel D et al (2000) Wound complications after left ventricular assist device implantation. Ann Thorac Surg 70:538-541

    Article  PubMed  CAS  Google Scholar 

  • Topilsky Y, Oh JK, Atchison FW et al (2011) Echocardiographic findings in stable outpatients with properly functioning HeartMate II left ventricular assist devices. J Am Soc Echocardiogr 24:157-169

    Article  PubMed  Google Scholar 

  • Uchida N, Ishikawa M, Watanabe T et al (1987) Hemodynamic adaptation to exercise after total artificial heart (TAH) implantation. Trans Am Soc Artif Intern Organs 33:240-244

    CAS  Google Scholar 

  • Wadia Y, Etheridge W, Smart F et al (2005) Pathophysiology of hepatic dysfunction and intrahepatic cholestasis in heart failure and after left ventricular assist device support. J Heart Lung Transpl 24: 361-370

    Article  Google Scholar 

  • Wilson SR, Givertz MM, Stewart GC et al (2009) Ventricular assist devices - The challenges of outpatient management. JACC 54:1647-1659

    Article  PubMed  Google Scholar 

  • Zimpfer D, Zrunek P, Roethy W et al (2007) Left ventricular assist devices decrease fixed pulmonary hypertension in cardiac transplant candidates. J Thorac Cardiovasc Surg 133:689-695

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boeken, U., Assmann, A., Born, F., Schmid, C. (2013). VAD-Nachsorge. In: Boeken, U., Assmann, A., Born, F., Schmid, C. (eds) Mechanische Herz-Kreislauf-Unterstützung. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29408-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29408-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29407-5

  • Online ISBN: 978-3-642-29408-2

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics