Skip to main content

Indikationen zur mechanischen Kreislaufunterstützung

  • Chapter
Mechanische Herz-Kreislauf-Unterstützung
  • 3056 Accesses

Zusammenfassung

Je nach Indikation werden verschiedene Systeme in verschiedener Funktion (LVAD, RVAD, BiVAD, pulsatil, nichtpulsatil, para-, intrakorporal, TAH [Total Artificial Heart], ECMO [extrakorporale Membranoxigenierung], perkutane Systeme) eingesetzt (► Kap. 3 bis ► Kap. 7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Literatur zu 2.1 bis 2.3

  • Bull DA, Reid BB, Selzmann CH, Mesley R, Drakos S, et al (2010) The impact of bridge-to-transplant ventricular assist device support on survival after cardiac transplantation. J Thorac Cardiovasc Surg 140(1): 169-173

    Article  PubMed  Google Scholar 

  • Dipla K, Mattiello JA, Jeevanandam V, Houser SR, Margulies KB (1998) Myocyte recovery after mechanical circulatory support in humans with end-stage heart failure. Circulation 97(23): 2316-2322

    Article  PubMed  CAS  Google Scholar 

  • Dor V (2004) Surgical remodelling of left ventricle. Surg Clin North Am 84(1): 27-43

    Article  PubMed  Google Scholar 

  • Frazier OH, Myers T (1999) Left ventricular assist system as a bridge to myocardial recovery. Ann Thorac Surg 69: 734-741

    Article  Google Scholar 

  • John R, Liao K, Kamdar F, Eckmann P, Boyle A, Colvin-Adams M (2010) Effects on pre- and post- transplant pulmonary hemodynamics in patients with continous-flow left ventricular assist devices. J Thorac Cardiovasc Surg 140(2): 447-452

    Article  PubMed  Google Scholar 

  • Kirklin J, Naftel D, Kormos R, Stevenson L, Pagani F et al (2010) Second INTERMACS annual report: More than 1,000 primary left ventricular assist device implants. J Heart Lung Transplant 29 (1): 1-10

    Article  PubMed  Google Scholar 

  • Kirklin J, Naftel D, Kormos R, Stevenson L, Pagani F et al (2011) Third INTERMACS annual report: The evolution of destination therapy in the United States. J Heart Lung Transplant 30(2): 115-123

    Article  PubMed  Google Scholar 

  • Krishnamani R, DeNofrio D, Konstam MA (2010) Emerging ventricular assist devices for long-term cardiac support. Nat Rev Cardiol 7: 71-76

    Article  PubMed  Google Scholar 

  • Kucuker SA, Stetson SJ, Becker KA, Akgül A, Loebe M (2004) Evidence of improved right ventricular structure after LVAD support in patients with end-stage cardiomyopathy. J Heart Lung Transplant 23(1): 28-35

    Article  PubMed  Google Scholar 

  • Matthews JC, Koelling TM, Pagani FD, Aaronson KD (2008) The right ventricular failure risk score: a preoperative tool for assessing the risk for right ventricular failure in left ventricular assist device candidates. JACC 51(22): 2163-2172

    Article  PubMed  Google Scholar 

  • Oz M, Rose E, Levin H (1995) Selection criteria for placement of left ventricular assist devices. Am Heart J 129: 173-177

    Article  PubMed  CAS  Google Scholar 

  • Patel ND, Weiss ES, Schaffer J, Ulrich SL, Rivard DC et al (2008) Right heart dysfunction after left ventricular assist device implantation: a comparison of the pulsatile Heart Mate I and axial- flow Heart Mate II devices. Ann Thorac Surg 86(3): 832-840

    Article  PubMed  Google Scholar 

  • Russell SD, Rogers JG, Milano CA, Dyke DB, Pagani FD et al (2009) HeartMate II Clinical Investigators; Renal and hepatic function improve in advanced heart failure patients during continous-flow support with the Heart Mate II left ventricular assist device. Circulation 120(23): 2352-2357

    Article  PubMed  Google Scholar 

  • Taggart P, Sutton P, John R, Lab M, Swanton H (1992) Monophasic action potential recordings during acute changes in ventricular loading induced by the Valsalva manoeuvre. Br Heart J 67(3): 221-229

    Article  PubMed  CAS  Google Scholar 

  • Torre-Amione G, Loebe M (2006) Myocardial recovery following prolonged mechanical support. In: Frazier OH, Kirklin JK Mechanical circulatory support, Volume 1. Elsevier, Philadelphia, London, Toronto, Montreal, Sydney, Tokyo, 155-169

    Google Scholar 

  • Westaby S (2000) Non-transplant surgery for heart failure. Heart 83(5): 603-610

    Article  PubMed  CAS  Google Scholar 

  • Williams M, Oz M (2001) Indications and patient selection for mechanical ventricular assistance. Ann Thorac Surg 71(3)Supplement: S86-91

    Article  Google Scholar 

Literatur zu 2.4

  • Adamson RM, Dembitsky WP, Jaski BE, Daily PO, Moreno R et al (1997) Left ventricular assist device support of medically unresponsive pulmonary hypertension and aortic insufficiency. ASAIO Journal 43(4): 365-369

    PubMed  CAS  Google Scholar 

  • Al-Khaldi A, Ergina P, DeVarennes B, Lachappelle K, Cecere R (2004) Left ventricular unloading in a patient with end-stage cardiomyopathy and medically unresponsive pulmonary hypertension. Artif Org 28(2): 158-160

    Article  Google Scholar 

  • Bayliss J, Norell M, Canepa-Anson R, Sutton G, Poole-Wilson P (1987) Untreated heart failure: clinical and neuroendocrine effects of introducing diuretics. Br Heart J 57(1): 17-22

    Article  PubMed  CAS  Google Scholar 

  • Bleasdale RA, Banner NR, Anyanwu AC, Mitchell AG, Khaghani A, Yacoub MH (2002) Determinants of outcome after heterotopic heart transplantation. J Heart Lung Transplant 21(8): 867-873

    Article  PubMed  CAS  Google Scholar 

  • Chen YM, Holstein-Rathlou NH (1993) Differences in dynamic autoregulation of renal blood flow between SHR and WKY rats. Am J Physiol 264(1 Pt 2): F166-74

    Google Scholar 

  • Costard-Jackle A, Fowler MB (1992) Influence of preoperative pulmonary artery pressure on mortality after heart transplantation: testing of potential reversibility of pulmonary hypertension with nitroprusside is useful in defining a high risk group. JACC 19(1): 48-54

    Article  PubMed  CAS  Google Scholar 

  • Cowley AWJr (1992) Long-term control of arterial blood pressure«. Physiol Rev 72(1): 231-300

    PubMed  Google Scholar 

  • Cowley AWJr, Mattson DL, Lu S, Roman RJ (1995) The renal medulla and hypertension. Hypertension 25(4 Pt 2): 663-673

    Article  PubMed  Google Scholar 

  • DiBona GF (1989) Sympathetic nervous system influences on the kidney. Role in hypertension, Am J Hypertens 2(3 Pt 2): 119S-124S

    Google Scholar 

  • Erickson KW, Costanzo-Nordin MR, O’Sullivan EJ, Johnson MR, Zucker MJ et al (1990) Influence of preoperative transpulmonary gradient on late mortality after orthotopic heart transplantation. J Heart Transplant 9(5): 526-537

    PubMed  CAS  Google Scholar 

  • Espinoza C, Manito N, Castells E, Rodriguez R, Octavio de Toledo MC et al (1999) Perioperative mortality risk factors after orthotopic heart transplantation. Transplant Proc 31(6): 2509-2510

    Article  PubMed  CAS  Google Scholar 

  • Etz CD, Welp HA, Tjan TD, Hoffmeier A, Weigang E et al (2007) Medically refractory pulmonary hypertension: treatment with nonpulsatile left ventricular assist devices. Ann Thorac Surg 83(5): 1697-1705

    Article  PubMed  Google Scholar 

  • Fornage M, Amos CI, Kardia S, Sing CF, Turner ST, Boerwinkle E (1998) Variation in the region of the angiotensin-converting enzyme gene influences interindividual differences in blood pressure levels in young white males. Circulation 97(18): 1773-1779

    Article  PubMed  CAS  Google Scholar 

  • Franchini KG, Mattson DL, Cowley AWJr (1997) Vasopressin modulation of medullary blood flow and pressure-natriuresis-diuresis in the decerebrated rat. Am J Physiol 272(5 Pt 2): R1472-9

    Google Scholar 

  • Francis GS, Benedict C, Johnstone DE, Kirlin PC, Nicklas J et al (1990) Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure. A substudy of the Studies of Left Ventricular Dysfunction (SOLVD). Circulation 82(5): 1724-1729

    Article  PubMed  CAS  Google Scholar 

  • Francis GS, Rector TS, Cohn JN (1988) Sequential neurohumoral measurements in patients with congestive heart failure. Am Heart J 116(6 Pt 1): 1464-1468

    Article  PubMed  CAS  Google Scholar 

  • Frattola A, Parati G, Cuspidi C, Albini F, Mancia G (1993) Prognostic value of 24-hour blood pressure variability. J Hypertens 11(10): 1133-1137

    Article  PubMed  CAS  Google Scholar 

  • Gallagher RC, Kormos RL, Gasior T, Murali S, Griffith BP, Hardesty RL (1991) Univentricular support results in reduction of pulmonary resistance and improved right ventricular function. ASAIO Trans 37(3): M287-288

    Google Scholar 

  • Guyton AC, Coleman TG (1967) Long-term regulation of the circulation: interrelationship with body fluid volumes. Physical Bases of Circulatory Transport: Regulation and Exchange 179-201

    Google Scholar 

  • Guyton AC (1991) Blood pressure control - special role of the kidneys and body fluids, Science (New York, N.Y.) 252(5014): 1813-1816

    Article  PubMed  CAS  Google Scholar 

  • Hall JE, Guyton AC, Coleman TG, Mizelle HL, Woods LL (1986) Regulation of arterial pressure: role of pressure natriuresis and diuresis, Fed Proc 45(13): 2897-2903

    PubMed  CAS  Google Scholar 

  • Hillege HL, Girbes AR, de Kam PJ, Boomsma F, de Zeeuw D et al (2000) Renal function, neurohormonal activation, and survival in patients with chronic heart failure. Circulation 102(2): 203-210

    Article  PubMed  CAS  Google Scholar 

  • Holstein-Rathlou NH, He J, Wagner AJ, Marsh DJ (1995) Patterns of blood pressure variability in normotensive and hypertensive rats. Am J Physiol 269(5 Pt 2): R1230-9

    Google Scholar 

  • Holstein-Rathlou NH, Marsh DJ (1994) Renal blood flow regulation and arterial pressure fluctuations: a case study in nonlinear dynamics. Physiol Rev 74(3): 637-681

    PubMed  CAS  Google Scholar 

  • Kirklin JK, Naftel DC, Kirklin JW, Blackstone EH, White-Williams C, Bourge RC (1988) Pulmonary vascular resistance and the risk of heart transplantation. J Heart Transplant 7(5): 331-336

    PubMed  CAS  Google Scholar 

  • Klotz S, Deng MC, Hanafy D, Schmid C, Stypmann J et al (2003) Reversible pulmonary hypertension in heart transplant candidates–pretransplant evaluation and outcome after orthotopic heart transplantation. Eur Jo Heart Fail 5(5): 645-653

    Article  Google Scholar 

  • Klotz S, Wenzelburger F, Stypmann J, Welp H, Drees G et al (2006) Reversible pulmonary hypertension in heart transplant candidates: to transplant or not to transplant. Ann Thorac Surg 82(5): 1770-1773

    Article  PubMed  Google Scholar 

  • Letienne R, Barres C, Cerutti C, Julien C (1998) Short-term haemodynamic variability in the conscious areflexic rat. J Physiol 506 (Pt 1): 263-274

    Article  PubMed  CAS  Google Scholar 

  • Ludwig C (1843) Beiträge zur Lehre vom Mechanismus der Harnsecretion, Marburg Majid DS, Navar LG (1996) Medullary blood flow responses to changes in arterial pressure in canine kidney. Am J Physiol 270(5 Pt 2): F833-8

    Google Scholar 

  • Majid DS, Williams A, Navar LG (1993) Inhibition of nitric oxide synthesis attenuates pressure- induced natriuretic responses in anesthetized dogs. Am J Physiol 264(1 Pt 2): F79-87

    Google Scholar 

  • Mancia G, Di Rienzo M, Parati G, Grassi G (1997a) Sympathetic activity, blood pressure variability and end organ damage in hypertension. J Hum Hypertens 11 Suppl 1: S3-8

    Google Scholar 

  • Mancia G, Ulian L, Santucciu C, Parati G (1997b) Ambulatory blood pressure in hypertension with particular reference to the kidney. J Nephrol 10(4): 198-202

    CAS  Google Scholar 

  • Martin J, Siegenthaler MP, Friesewinkel O, Fader T, van de Loo A et al (2004) Implantable left ventricular assist device for treatment of pulmonary hypertension in candidates for orthotopic heart transplantation-a preliminary study. Eur J Cardiothorac Surg 25(6): 971-977

    Article  PubMed  Google Scholar 

  • Mattson DL, Lu S, Roman RJ, Cowley AWJr (1993) Relationship between renal perfusion pressure and blood flow in different regions of the kidney. Am J Physiol 264(3 Pt 2): R578-83

    Google Scholar 

  • Mattson DL, Maeda CY, Bachman TD, Cowley AWJr (1998) Inducible nitric oxide synthase and blood pressure. Hypertension 31(1): 15-20

    Article  PubMed  CAS  Google Scholar 

  • Moore LC, Casellas D (1990) Tubuloglomerular feedback dependence of autoregulation in rat juxtamedullary afferent arterioles. Kidney International 37(6) 1402-1408

    Article  PubMed  CAS  Google Scholar 

  • Murali S, Kormos RL, Uretsky BF, Schechter D, Reddy PS et al (1993) Preoperative pulmonary hemodynamics and early mortality after orthotopic cardiac transplantation: the Pittsburgh experience. Am Heart J 126(4): 896-904

    Article  PubMed  CAS  Google Scholar 

  • Nafz B, Ehmke H, Wagner CD, Kirchheim HR, Persson PB (1998) Blood pressure variability and urine flow in the conscious dog. Am J Physiol 274(4 Pt 2): F680-6

    Google Scholar 

  • Nafz B, Stegemann J, Bestle MH, Richter N, Seeliger E et al (2000a) Antihypertensive effect of 0.1-Hz blood pressure oscillations to the kidney. Circulation 101(5): 553-557

    Article  CAS  Google Scholar 

  • Nafz B, Stegemann J, Bestle MH, Richter N, Seeliger E et al (2000b) Antihypertensive effect of 0.1-Hz blood pressure oscillations to the kidney. Circulation 101(5): 553-557

    Article  CAS  Google Scholar 

  • Nguyen DQ, Ormaza S, Miller LW, Bittner HB, Rose AG et al (2001) Left ventricular assist device support for medically unresponsive pulmonary hypertension from left ventricular failure. J Heart Lung Transplant 20(2): 190

    Article  PubMed  Google Scholar 

  • Noirhomme P, Jacquet L, Underwood M, El Khoury G, Goenen M, Dion R (1999) The effect of chronic mechanical circulatory support on neuroendocrine activation in patients with end-stage heart failure. Eur J Cardiothorac Surg16(1): 63-67

    Article  PubMed  CAS  Google Scholar 

  • Parati G, Ulian L, Santucciu C, Tortorici E, Villani A et al (1997) Clinical value of blood pressure variability. Blood pressure.Supplement 2: 91-96

    PubMed  CAS  Google Scholar 

  • Petrofski JA, Hoopes CW, Bashore TM, Russell SD, Milano CA (2003) Mechanical ventricular support lowers pulmonary vascular resistance in a patient with congential heart disease. Ann Thorac Surg 75(3): 1005-1007

    Article  PubMed  Google Scholar 

  • Reichenspurner H, Hildebrandt A, Boehm D, Kaulbach HG, Willems S et al (1989) Heterotopic heart transplantation in 1988–recent selective indications and outcome. J Heart Transplant 8(5): 381-386

    PubMed  CAS  Google Scholar 

  • Reinhardt HW, Corea M, Boemke W, Pettker R, Rothermund L et al (1994) Resetting of 24-h sodium and water balance during 4 days of servo-controlled reduction of renal perfusion pressure. Am J Physiol 266(2 Pt 2): H650-7

    Google Scholar 

  • Schricker K, Potzl B, Hamann M, Kurtz A (1996) Coordinate changes of renin and brain-type nitricoxide-synthase (b-NOS) mRNA levels in rat kidneys. Pflug Arch Eur J Phy 432(3): 394-400

    Article  CAS  Google Scholar 

  • Smedira NG, Massad MG, Navia J, Vargo RL, Patel AN et al (1996) Pulmonary hypertension is not a risk factor for RVAD use and death after left ventricular assist system support. ASAIO J 42(5): M733-5

    Article  Google Scholar 

  • Sytkowski PA, Kannel WB, D’Agostino RB (1990) Changes in risk factors and the decline in mortality from cardiovascular disease. The Framingham Heart Study. NEJM 322(23): 1635-1641

    Article  PubMed  CAS  Google Scholar 

  • Taylor DO, Edwards LB, Boucek MM, Trulock EP, Aurora P et al (2007) Registry of the International Society for Heart and Lung Transplantation: twenty-fourth official adult heart transplant report–2007 J Heart Lung Transplant 26(8): 769-781

    Article  PubMed  Google Scholar 

  • Tenderich G, Koerner MM, Stuettgen B, Hornik L, Mirow N et al (1998) Does preexisting elevated pulmonary vascular resistance (transpulmonary gradient > 15 mm Hg or > 5 wood) predict early and long-term results after orthotopic heart transplantation? Transplant Proc 30(4): 1130-1131

    Article  PubMed  CAS  Google Scholar 

  • Wasler A, Iberer F, Tscheliessnigg KH, Auer T, Petutschnigg B (1993) Prostaglandin E1 in the pretransplantation period in patients with pulmonary hypertension. J Heart Lung Transplant 12(5): 884

    PubMed  CAS  Google Scholar 

  • Welp H, Rukosujew A, Tjan TD, Hoffmeier A, Kosek V et al (2010a) Effect of pulsatile and non-pulsa- tile left ventricular assist devices on the renin-angiotensin system in patients with end-stage heart failure. Thorac Cardiovasc Surg 58 Suppl 2: 185-188

    Article  Google Scholar 

  • Welp HA, Nafz B, Persson PB, Jurgen SR, Scheld HH, Hoffmeier A (2010b) 57: Influence of Pulsatile and Non-Pulsatile Perfusion on Kidney Function. J Heart Lung Transplant 29(2)Supplement 1: S25

    Article  Google Scholar 

  • Wilcox CS, Welch WJ, Murad F, Gross SS, Taylor G et al (1992) Nitric oxide synthase in macula densa regulates glomerular capillary pressure.Proc Nat Acad Sci USA 89(24): 11993-11997

    Article  PubMed  CAS  Google Scholar 

  • Wittmann U, Nafz B, Ehmke H, Kirchheim HR, Persson PB (1995) Frequency domain of renal autoregulation in the conscious dog. Am J Physiol 269(3 Pt 2): F317-322

    Google Scholar 

  • Zakliczynski M, Zebik T, Maruszewski M, Swierad M, Zembala M (2005) Usefulness of pulmonary hypertension reversibility test with sodium nitroprusside in stratification of early death risk after orthotopic heart transplantation Transplant Proc 37(2): 1346-1348

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boeken, U., Assmann, A., Born, F., Schmid, C. (2013). Indikationen zur mechanischen Kreislaufunterstützung. In: Boeken, U., Assmann, A., Born, F., Schmid, C. (eds) Mechanische Herz-Kreislauf-Unterstützung. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29408-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29408-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29407-5

  • Online ISBN: 978-3-642-29408-2

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics