Skip to main content

Ausblick

  • Chapter
  • 3027 Accesses

Zusammenfassung

Herz-Kreislauf-Unterstützungssysteme (VAD) und Kunstherzen (TAH) benötigen Energie. Absolut notwendige Voraussetzungen für solch ein Gerät im Sinne einer »Destination-Therapy« und somit als Alternative zur HTX (Herztransplantation) sind die Langlebigkeit, die Biokompatibilität und die Möglichkeit einer kompletten Implantation. Problematisch ist bisher, dass bei vielen eingesetzten Produkten die Energie über eine transkutan zugeleitete »Drive-Line« zugeführt wird, wodurch eine potentielle Infektionsquelle entsteht.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Literatur zu 10.1

  • Dowling RD, Gray LA Jr, Etoch SW et al (2003) The Abio-Cor implantable replacement heart. Ann Thorac Surg; 75: 93-99

    Article  Google Scholar 

  • Mehta SM, Pae WE, Rosenberg G et al (2001) The LionHeart LVD-2000: A completely implanted left ventricular assist device for chronic circulatory support. Ann Thorac Surg; 71: 156-161

    Article  Google Scholar 

  • Morris RJ (2008) Total Artificial Heart - Concepts and clinical use. Thorac Cardiovasc Surg; 20: 247-25

    Google Scholar 

  • Mussivand T, Miller JA, Santerre PJ et al (1993) Transcutaneous energy transfer system performance evaluation. Artif Organs; 17: 940-947

    Article  PubMed  CAS  Google Scholar 

  • Pae WE, Connell JM, Boehmer JP et al (2007) Neurologic events with a totally implantable left ventricular assist device: European LionHeart Clinical Utility Baseline Study (CUBS). J Heart Lung Transplant; 26: 1-8

    Article  PubMed  Google Scholar 

  • Slaughter MS, Myers TJ (2010) Transcutaneous energy transmission for mechanical circulation support systems. J Card Surg; 25: 484-489

    Article  PubMed  Google Scholar 

Literatur zu 10.2

  • Klotz S, Meyns B, Simon A, Wittwer T, Rahmanian P et al (2010) Partial mechanical long-term support with the CircuLite Synergy pump as bridge-to-transplant in congestive heart failure. Thorac Cardiovasc Surg 58 Suppl 2: S173-178

    Article  Google Scholar 

  • Meyns B, Ector J, Rega F, Droogne W, Vanhaecke J et al (2008) First human use of partial left ventricular heart support with the Circulite synergy micro-pump as a bridge to cardiac transplantation. Eur Heart J 29: 2582

    Article  PubMed  Google Scholar 

  • Meyns BP, Simon A, Klotz S, Wittwer T, Schlensak C et al (2011) Clinical benefits of partial circulatory support in New York Heart Association Class IIIB and Early Class IV patients. Eur J Cardiothorac Surg 39: 693-698

    Article  PubMed  Google Scholar 

  • Morley D, Litwak K, Ferber P, Spence P, Dowling R et al (2007) Hemodynamic effects of partial ventricular support in chronic heart failure: results of simulation validated with in vivo data. J Thorac Cardiovasc Surg 133: 21-28

    Article  PubMed  Google Scholar 

  • Rogers JG, Aaronson KD, Boyle AJ, Russell SD, Milano CA et al (2010) Continuous flow left ventricular assist device improves functional capacity and quality of life of advanced heart failure patients. J Am Coll Cardiol 55: 1826-1834

    Article  PubMed  Google Scholar 

  • Rogers JG, Bostic RR, Tong KB, Adamson R, Russo M, Slaughter MS (2011) Cost-Effectiveness Analysis of Continuous Flow Left Ventricular Assist Devices as Destination Therapy. Circ Heart Fail 5(1):10-16 Epub 2011 Nov 3

    Article  PubMed  Google Scholar 

  • Schmitto JD, Molitoris U, Haverich A, Strueber M (2011) Implantation of a centrifugal pump as a left ventricular assist device through a novel, minimized approach: Upper hemisternotomy combined with anterolateral thoracotomy. J Thorac Cardiovasc Surg 143(2):511-3. Epub 2011 Sep 7

    Article  PubMed  Google Scholar 

  • Selzman CH, Sheridan BC (2007) Off-pump insertion of continuous flow left ventricular assist devices. J Card Surg 22: 320-322

    Article  PubMed  Google Scholar 

Literatur zu 10.3

  • Fukamachi K, Horvath DJ, Massiello AL, Fumoto H, Horai T et al (2010) An innovative, sensorless, pulsatile, continuous-flow total artificial heart: device design and initial in vitro study. J Heart Lung Transplant 29: 13-20

    Article  PubMed  Google Scholar 

  • Meyer A, Slaughter M (2011) The total artificial heart. Panminerva Med 53: 141-154

    PubMed  CAS  Google Scholar 

  • Meyns BP, Simon A, Klotz S, Wittwer T, Schlensak C et al (2011). Clinical benefits of partial circulatory support in New York Heart Association Class IIIB and Early Class IV patients. Eur J Cardiothorac Surg 39: 693-698

    Article  PubMed  Google Scholar 

  • Morshuis M, El-Banayosy A, Arusoglu L, Koerfer R, Hetzer R et al (2009) European experience of DuraHeart magnetically levitated centrifugal left ventricular assist system. Eur J Cardiothorac Surg 35: 1020-1027; discussion 1027-1028

    Article  PubMed  Google Scholar 

  • Noon GP, Loebe M (2010) Current status of the MicroMed DeBakey Noon Ventricular Assist Device. Tex Heart Inst J 37: 652-653

    PubMed  Google Scholar 

  • Wieselthaler GM, G O’Driscoll D, Jansz P, Khaghani A, Strueber M (2010). Initial clinical experience with a novel left ventricular assist device with a magnetically levitated rotor in a multi-institutional trial. J Heart Lung Transplant 29: 1218-1225

    Article  PubMed  Google Scholar 

  • Yamazaki K (2007) EVAHEART: next-generation ventricular assist device. Nihon Rinsho 65 Suppl 5: 594-600

    PubMed  Google Scholar 

Literatur zu 10.4

  • Achneck HE, Jamiolkowski RM, Jantzen AE, Haseltine JM, Lane WO et al (2011) The biocompatibility of titanium cardiovascular devices seeded with autologous blood-derived endothelial progenitor cells: EPC-seeded antithrombotic Ti implants. Biomaterials 32(1):10-18

    Article  PubMed  CAS  Google Scholar 

  • Akhyari P, Kamiya H, Haverich A, Karck M, Lichtenberg A (2008) Myocardial tissue engineering: the extracellular matrix. Eur J Cardiothorac Surg 34(2):229-241

    Article  PubMed  Google Scholar 

  • Asai T, Lee MH, Arrecubieta C, von Bayern MP, Cespedes CA et al (2007) Cellular coating of the left ventricular assist device textured polyurethane membrane reduces adhesion of Staphylococcus aureus. J Thorac Cardiovasc Surg 133(5):1147-1153

    Article  PubMed  CAS  Google Scholar 

  • Cheng S, Craig WS, Mullen D, Tschopp JF, Dixon D, Pierschbacher MD (1994) Design and synthesis of novel cyclic RGD-containing peptides as highly potent and selective integrin alpha IIb beta 3 antagonists. J Med Chem 37(1):1-8

    Article  PubMed  CAS  Google Scholar 

  • Choi CH, Hagvall SH, Wu BM, Dunn JC, Beygui RE, CJ Kim CJ (2007) Cell interaction with three-dimensional sharp-tip nanotopography. Biomaterials 28(9):1672-1679 Epub 2006 Dec 15

    Article  PubMed  CAS  Google Scholar 

  • Dekker A, Reesink K, van Der Veen E, Van Ommen V, Geskes G et al (2003) Efficacy of a new intraaortic propeller pump vs the intraaortic balloon pump: an animal study. Chest 123(6):2089-2095

    Article  Google Scholar 

  • Ehrbar M, Metters A, Zammaretti P, Hubbell JA, Zisch AH (2005) Endothelial cell proliferation and progenitor maturation by fibrin-bound VEGF variants with differential susceptibilities to local cellular activity. J Control Release 101(1-3):93-109

    Article  PubMed  CAS  Google Scholar 

  • Hess C, Wiegmann B, Maurer AN, Fischer P, Möller L et al (2010) Reduced thrombocyte adhesion to endothelialized poly 4-methyl-1-pentene gas exchange membranes - a first step toward bioartificial lung development. Tissue Eng Part A 16(10):3043-3053

    Article  PubMed  CAS  Google Scholar 

  • Hsu SH, Chu WP, Lin YS, Chiang YL, Chen DC, Tsai CL (2004) The effect of an RGD-containing fusion protein CBD-RGD in promoting cellular adhesion. J Biotechnol 111(2):143-154

    Article  PubMed  CAS  Google Scholar 

  • Huang W, Zhang D, Millard RW, Wang T, Zhao T et al. (2010) Gene manipulated peritoneal cell patch repairs infarcted myocardium. J Mol Cell Cardiol 48(4):702-712

    Article  PubMed  CAS  Google Scholar 

  • Karrer L, Duwe J, Zisch AH, Khabiri E, Cikirikcioglu M et al (2005) PPS-PEG surface coating to reduce thrombogenicity of small diameter ePTFE vascular grafts. Int J Artif Organs 28(10):993-1002

    Google Scholar 

  • Larsen CC, Kligman F, Tang C, Kottke-Marchant K, Marchant RE (2007) A biomimetic peptide fluorosurfactant polymer for endothelialization of ePTFE with limited platelet adhesion. Biomaterials 28(24):3537-48. Epub 2007 May 4

    Article  PubMed  CAS  Google Scholar 

  • Lehle K, Stock M, Schmid T, Schopka S, Straub RH, Schmid C (2009) Cell-type specific evaluation of biocompatibility of commercially available polyurethanes. J Biomed Mater Res B Appl Biomater 90(1):312-318.

    PubMed  Google Scholar 

  • McMillan R, Meeks B, Bensebaa F, Deslandes Y, Sheardown H (2001) Cell adhesion peptide modification of gold-coated polyurethanes for vascular endothelial cell adhesion. J Biomed Mater Res 54(2):272-283

    Article  CAS  Google Scholar 

  • Meinhart JG, Schense JC, Schima H, Gorlitzer M, Hubbell JA et al (2005) Enhanced endothelial cell retention on shear-stressed synthetic vascular grafts precoated with RGD-cross-linked fibrin. Tissue Eng 11(5-6):887-895

    Article  PubMed  CAS  Google Scholar 

  • Miller DC, Thapa A, Haberstroh KM, Webster TJ (2004) Endothelial and vascular smooth muscle cell function on poly(lactic-co-glycolic acid) with nano-structured surface features. Biomaterials 25(1):53-61

    Article  PubMed  CAS  Google Scholar 

  • Pankajakshan D, Kansal V, Agrawal DK (2012) In vitro differentiation of bone marrow derived porcine mesenchymal stem cells to endothelial cells. J Tissue Eng Regen Med. 2012 May 18. doi: 10.1002/term.1483. [Epub ahead of print]

    Google Scholar 

  • Reynolds MM, Hrabie JA, Oh BK, Politis JK, Citro ML et al (2006) Nitric oxide releasing polyurethanes with covalently linked diazeniumdiolated secondary amines. Biomacromolecules 7(3):987-994

    Article  PubMed  CAS  Google Scholar 

  • Rodenberg EJ, Pavalko FM (2007) Peptides derived from fibronectin type III connecting segments promote endothelial cell adhesion but not platelet adhesion: implications in tissue-engineered vascular grafts. Tissue Eng 13(11):2653-2666

    Article  PubMed  CAS  Google Scholar 

  • Ruegg C, Dormond O, Mariotti A (2004) Endothelial cell integrins and COX-2: mediators and therapeutic targets of tumor angiogenesis. Biochim Biophys Acta 1654(1):51-67

    PubMed  CAS  Google Scholar 

  • Sekine H, Shimizu T, Hobo K, Sekiya S, Yang J et al (2008) Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts. Circulation 118(14 Suppl):S145-S152

    Article  PubMed  CAS  Google Scholar 

  • Smith EJ, Reitan O, Keeble T, Dixon K, Rothman MT (2009) A first-in-man study of the Reitan catheter pump for circulatory support in patients undergoing high-risk percutaneous coronary intervention. Catheter Cardiovasc Interv 73(7):859-65.

    Article  PubMed  Google Scholar 

  • Taite LJ, Yang P, Jun HW, West JL (2008) Nitric oxide-releasing polyurethane-PEG copolymer containing the YIGSR peptide promotes endothelialization with decreased platelet adhesion. J Biomed Mater Res B Appl Biomater 84(1):108-116

    PubMed  Google Scholar 

  • Tudorache I, Kostin S, Meyer T, Teebken O, Bara C et al (2009) Viable vascularized autologous patch for transmural myocardial reconstruction. Eur J Cardiothorac Surg 36(2):306-311

    Article  PubMed  Google Scholar 

  • Wang B, Borazjani A, Tahai M, Curry AL, Simionescu DT et al (2010) Fabrication of cardiac patch with decellularized porcine myocardial scaffold and bone marrow mononuclear cells. J Biomed Mater Res A 94(4):1100-1110

    PubMed  Google Scholar 

  • Yildirim Y, Naito H, Didie M, Karikkineth BC, Biermann D et al (2007) Development of a biological ventricular assist device: preliminary data from a small animal model. Circulation 116(11 Suppl):I16-I23

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boeken, U., Assmann, A., Born, F., Schmid, C. (2013). Ausblick. In: Boeken, U., Assmann, A., Born, F., Schmid, C. (eds) Mechanische Herz-Kreislauf-Unterstützung. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29408-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29408-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29407-5

  • Online ISBN: 978-3-642-29408-2

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics