Skip to main content

Analytical and Numerical Study of Inhomogeneous Epstein and Epstein–Hurwitz Zeta Functions

  • Chapter
Ten Physical Applications of Spectral Zeta Functions

Part of the book series: Lecture Notes in Physics ((LNP,volume 855))

  • 1513 Accesses

Abstract

In this chapter we present some of the most advanced results obtained in our study of the different zeta functions. From the mathematical point of view they are, without any doubt, quite far reaching and involved. As will be explained in more detail later, the reason why they are not to be found in the mathematical literature dealing with zeta functions (in particular, with Epstein zeta functions) is explained by the fact that non-homogeneous Epstein zeta functions seem not to be very interesting in number theory—contrary to ordinary Epstein zeta functions, which are of paramount importance. The situation in Physics is just the opposite: ordinary Epstein zeta functions appear as a very limited particular case: massless, zero temperature, no chemical potential, of the usual theories. Some of the formulas that will be obtained in the first section are due to the author and are named sometimes after him. They constitute an original and non-trivial extension of the celebrated Chowla–Selberg series formula. Surprisingly enough, the new formulae, which solve the non-homogeneous case (the most important in physical applications) turns out to be, in the end, as beautiful (mathematically) as the one derived by those famous mathematicians for the homogeneous situation. To see the importance that Chowla and Selberg attributed to their discovery, the reader should just throw a look at their original articles. Needless to say the author is equally happy with the new formulae. For physical applications, the importance of these expressions lies in the quick convergence (of exponential type) of the series appearing there. This fact is illustrated at large, in the present chapter, with specific numerical calculations carried out in full detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    I am indebted with S. Rafels-Hildebrandt for this additional analysis.

References

  1. P. Epstein, Math. Ann. 56, 615 (1903)

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Epstein, Math. Ann. 65, 205 (1907)

    Google Scholar 

  3. S. Iyanaga, Y. Kawada (eds.), Encyclopedic Dictionary of Mathematics, vol. II (MIT Press, Cambridge, 1977), p. 1372 ff

    Google Scholar 

  4. E. Elizalde, S.D. Odintsov, A. Romeo, A.A. Bytsenko, S. Zerbini, Zeta Regularization Techniques with Applications (World Scientific, Singapore, 1994)

    Book  MATH  Google Scholar 

  5. E. Elizalde, Ten Physical Applications of Spectral Zeta Functions (Springer, Berlin, 1995)

    MATH  Google Scholar 

  6. A.A. Bytsenko, G. Cognola, E. Elizalde, V. Moretti, S. Zerbini, Analytic Aspects of Quantum Fields (World Scientific, Singapore, 2003)

    Book  Google Scholar 

  7. S. Chowla, A. Selberg, Proc. Natl. Acad. Sci. USA 35, 317 (1949)

    Article  MathSciNet  Google Scholar 

  8. S.K. Blau, M. Visser, A. Wipf, Nucl. Phys. B 310, 163 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  9. E. Elizalde, A. Romeo, Phys. Rev. D 40, 436 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  10. E. Elizalde, J. Math. Phys. 31, 170 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. E. Elizalde, J. Math. Phys. 34, 3222 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. E. Elizalde, J. Phys. A 22, 931 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. H. Heilbronn, Q. J. Math. Oxford 5, 150 (1934)

    Article  MATH  Google Scholar 

  14. M. Deuring, Math. Z. 37, 403 (1933)

    Article  MathSciNet  Google Scholar 

  15. E.T. Wittaker, G.N. Watson, A Course of Modern Analysis, 4th edn. (Cambridge University Press, Cambridge, 1965)

    Google Scholar 

  16. E. Elizalde, Zeta-function regularization techniques for series summations and applications, in Proceedings of the Leipzig Workshop: Quantum Field Theory under the Influence of External Conditions, 1992

    Google Scholar 

  17. T. Landsberg, J. Math. CXI, 234 (1893)

    Google Scholar 

  18. E. Elizalde, J. Math. Phys. 35, 6100 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. E. Elizalde, Commun. Math. Phys. 198, 83 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. E. Elizalde, J. Phys. A 30, 2735 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. E. Elizalde, J. Comput. Appl. Math. 118, 125 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. E. Elizalde, J. Math. Phys. 35, 3308 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. E. Elizalde, Yu. Kubyshin, J. Phys. A 27, 7533 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Elizalde .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Elizalde, E. (2012). Analytical and Numerical Study of Inhomogeneous Epstein and Epstein–Hurwitz Zeta Functions. In: Ten Physical Applications of Spectral Zeta Functions. Lecture Notes in Physics, vol 855. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29405-1_4

Download citation

Publish with us

Policies and ethics