Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 855))

Abstract

In this introductory chapter, an overview of the method of zeta function regularization is presented. We start with some brief historical considerations and by introducing some of the specific zeta functions that will be used in the following chapters in physical situations, as the Riemann, Hurwitz (or Riemann generalized), and Epstein zeta functions. We summarize the basic properties of the different zeta functions. We show explicitly how to regularize the Casimir energy in some simple cases in a correct way, thereby introducing the zeta-function regularization procedure. We compare it with other regularization methods and point out to some missuses of zeta regularization. These fundamental concepts are both extended and made much more precise in the last section, where examples of recent developments on powerful applications of the theory are discussed. We define the concept of zeta function associated with an elliptic partial differential operator, and point towards its uses to define ‘the determinant’ of the operator in the zeta regularized sense. We discuss the multiplicative anomaly or defect of the zeta determinant and finish with further perspectives of this regularization method, as the so-called operator regularization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A hint for Spanish speaking colleagues. In Spanish (and some other languages) the Greek letter ζ is phonetically transcribed as dseta (to mimic its original Greek pronunciation). In Greek the letter which is actually pronounced as the Spanish zeta is θ.

  2. 2.

    With some incredible exceptions, however, as the current Wikipedia article on “Zeta function regularization”, where no mention to Dowker and Critchley is done!

  3. 3.

    We will give more precise specifications at the end of this chapter.

  4. 4.

    An important portion of this book will be devoted to obtain such convenient forms of this reflection formula in different situations of physical interest.

References

  1. C. Reid, Hilbert (Springer, Berlin, 1970), p. 82

    MATH  Google Scholar 

  2. P. Epstein, Math. Ann. 56, 615 (1903)

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, ‘Bateman Manuscript Project’, Higher Transcendental Functions (McGraw-Hill, New York, 1953)

    Google Scholar 

  4. P. Epstein, Math. Ann. 65, 205 (1907)

    Google Scholar 

  5. S. Iyanaga, Y. Kawada (eds.), Encyclopedic Dictionary of Mathematics, vol. II (MIT Press, Cambridge, 1977), p. 1372 ff

    Google Scholar 

  6. E.C. Titchmarsh, The Zeta Function of Riemann (Cambridge University Press, Cambridge, England, 1930)

    MATH  Google Scholar 

  7. H.M. Edwards, Riemann’s Zeta Function (Academic Press, San Diego, 1974)

    MATH  Google Scholar 

  8. A. Ivić, The Riemann Zeta Function (Wiley, New York, 1985)

    MATH  Google Scholar 

  9. J. Jorgenson, S. Lang, Basic Analysis of Regularized Series and Products, Lecture Notes in Mathematics, vol. 1564 (Springer, Berlin, 1993)

    MATH  Google Scholar 

  10. E. Elizalde, S.D. Odintsov, A. Romeo, A.A. Bytsenko, S. Zerbini, Zeta Regularization Techniques with Applications (World Scientific, Singapore, 1994)

    Book  MATH  Google Scholar 

  11. E. Elizalde, Ten Physical Applications of Spectral Zeta Functions (Springer, Berlin, 1995)

    MATH  Google Scholar 

  12. A.A. Karatsuba, S.M. Voronin, The Riemann Zeta-Function (de Gruyter, Hawthorne, 1992)

    Book  MATH  Google Scholar 

  13. K. Kirsten, Spectral Functions in Mathematics and Physics (Chapman & Hall, London, 2001)

    Book  Google Scholar 

  14. A.A. Bytsenko, G. Cognola, E. Elizalde, V. Moretti, S. Zerbini, Analytic Aspects of Quantum Fields (World Scientific, Singapore, 2003)

    Book  Google Scholar 

  15. T.M. Apostol, Zeta and related functions, in NIST Handbook of Mathematical Functions, ed. by F.W.J. Olver et al. (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  16. G.H. Hardy, J.E. Littlewood, Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes. Acta Math. 41, 119 (1916)

    Article  MathSciNet  Google Scholar 

  17. G.H. Hardy, Mess. Math. 49, 85 (1919)

    Google Scholar 

  18. G.H. Hardy, Divergent Series (Clarendon Press, Oxford, 1949)

    MATH  Google Scholar 

  19. T. Carleman, Propriétés asymptotiques des fonctions fondamentales des membranes vibrantes (French), Skand. Mat.-Kongr. 8, 34–44 (1935)

    Google Scholar 

  20. S. Minakshisundaram, Å. Pleijel, Can. J. Math. 1, 242 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  21. R.T. Seeley, Complex powers of an elliptic operator: Singular integrals, in Proc. Symp. Pure Math., Chicago, IL, 1966 (Am. Math. Soc., Providence, 1967), pp. 288–307

    Google Scholar 

  22. D.B. Ray, I.M. Singer, Adv. Math. 7, 145 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  23. J.S. Dowker, R. Critchley, Phys. Rev. D 13, 3224 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  24. S.W. Hawking, Commun. Math. Phys. 55, 133 (1977)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. S. Chowla, A. Selberg, Proc. Natl. Acad. Sci. USA 35, 317 (1949)

    Article  MathSciNet  Google Scholar 

  26. R.T. Seeley, Am. J. Math. 91, 889 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  27. B.S. De Witt, Phys. Rep. 19, 295 (1975)

    Article  ADS  Google Scholar 

  28. H.P. McKean, I.M. Singer, J. Differ. Geom. 1, 43 (1967)

    MathSciNet  MATH  Google Scholar 

  29. P. Gilkey, J. Differ. Geom. 10, 601 (1975)

    MathSciNet  MATH  Google Scholar 

  30. P. Gilkey, Am. Math. Soc. Proc. Symp. Pure Math. 27, 265 (1975)

    MathSciNet  Google Scholar 

  31. P. Gilkey, Compos. Math. 38, 201 (1979)

    MathSciNet  MATH  Google Scholar 

  32. P. Gilkey, Contemp. Math. 73, 79 (1988)

    Article  MathSciNet  Google Scholar 

  33. E. Elizalde, S. Leseduarte, S. Zerbini, Mellin transform techniques for zeta-function resummations, UB-ECM-PF 93/7, arXiv: hep-th/9303126 (1993)

  34. P. Candelas, P. Raine, Phys. Rev. D 12, 965 (1975)

    Article  ADS  Google Scholar 

  35. A. Actor, Class. Quantum Gravity 5, 1415 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. I. Brevik, H.B. Nielsen, Phys. Rev. D 41, 1185 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. X. Li, X. Shi, J. Zhang, Phys. Rev. D 44, 560 (1991)

    Article  ADS  Google Scholar 

  38. B.F. Svaiter, N.F. Svaiter, Phys. Rev. D 47, 4581 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  39. L. Brink, H.B. Nielsen, Phys. Lett. B 45, 332 (1973)

    Article  ADS  Google Scholar 

  40. A. Salam, J. Strathdee, Nucl. Phys. B 90, 203 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  41. L.S. Brown, G.J. MacLay, Phys. Rev. 184, 1272 (1969)

    Article  ADS  Google Scholar 

  42. S.K. Blau, M. Visser, A. Wipf, Nucl. Phys. B 310, 163 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  43. E. Elizalde, K. Kirsten, J. Math. Phys. 35, 1260 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. D.G.C. McKeon, T.N. Sherry, Phys. Rev. Lett. 59, 532 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  45. A. Rebhan, Phys. Rev. D 39, 3101 (1989)

    Article  ADS  Google Scholar 

  46. A.Y. Shiekh, Can. J. Phys. 68, 620 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. D.G.C. McKeon, T.N. Sherry, Phys. Rev. D 35, 3854 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  48. E. Elizalde, A. Romeo, Phys. Rev. D 40, 436 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  49. V.M. Mostepanenko, N.N. Trunov, Casimir Effect and Its Applications (in Russian) (Energoatomizdat, Moscow, 1990)

    Google Scholar 

  50. A. Antillón, G. Germán, Phys. Rev. D 47, 4567 (1993)

    Article  ADS  Google Scholar 

  51. E. Elizalde, J. Math. Phys. 31, 170 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. I. Brevik, I. Clausen, Phys. Rev. D 39, 603 (1989)

    Article  ADS  Google Scholar 

  53. A. Actor, J. Phys. A 24, 3741 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. D.M. McAvity, H. Osborn, Nucl. Phys. B 394, 728 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  55. S.A. Frolov, A.A. Slavnov, Phys. Lett. B 309, 344 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  56. M. Bordag, E. Elizalde, K. Kirsten, J. Math. Phys. 37, 895 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. I.G. Avramidi, Nucl. Phys. B 355, 712 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  58. S.A. Fulling, G. Kennedy, Trans. Am. Math. Soc. 310, 583 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  59. P. Amsterdamski, A.L. Berkin, D.J. O’Connor, Class. Quantum Gravity 6, 1981 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. A. Voros, Commun. Math. Phys. 110, 439 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  61. P. Ramond, Field Theory: A Modern Primer (Benjamin-Cummings, Reading, 1981)

    Google Scholar 

  62. N. Birrell, P.C.W. Davies, Quantum Fields in Curved Spaces (Cambridge University Press, Cambridge, 1982)

    Book  Google Scholar 

  63. R. Forman, Commun. Math. Phys. 147, 485 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  64. M. Bordag, E. Elizalde, B. Geyer, K. Kirsten, Commun. Math. Phys. 179, 215 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  65. J.S. Dowker, Commun. Math. Phys. 162, 633 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  66. J.S. Dowker, Class. Quantum Gravity 11, 557 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  67. J.S. Dowker, J. Math. Phys. 35, 4989 (1994); Erratum, J. Math. Phys. 36, 988 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  68. M. Kontsevich, S. Vishik, in Functional Analysis on the Eve of the 21st Century, vol. 1 (1993), pp. 173–197

    Google Scholar 

  69. D.B. Ray, Adv. Math. 4, 109 (1970)

    Article  MATH  Google Scholar 

  70. D.B. Ray, I.M. Singer, Ann. Math. 98, 154 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  71. R. Killip, Spectral theory via sum rules, in Spectral Theory and Mathematical Physics, Proc. Symp. Pure Math., vol. 76 (2007), p. 907

    Google Scholar 

  72. A. Connes, Noncommutative Geometry (Academic Press, New York, 1994)

    MATH  Google Scholar 

  73. M. Wodzicki, Noncommutative residue, Chapter I, in Lecture Notes in Mathematics, vol. 1289, ed. by Yu.I. Manin (Springer, Berlin, 1987), p. 320

    Google Scholar 

  74. E. Elizalde, J. Phys. A 30, 2735 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  75. C. Kassel, Asterisque 177, 199 (1989), Sem. Bourbaki

    MathSciNet  Google Scholar 

  76. P. Ramond, Field Theory: A Modern Primer (Addison-Wesley, Redwood City, 1989)

    Google Scholar 

  77. N. Evans, Phys. Lett. B 457, 127 (1999)

    Article  ADS  Google Scholar 

  78. J.S. Dowker, On the relevance of the multiplicative anomaly, arXiv: hep-th/9803200 (1998)

  79. E. Elizalde, A. Filippi, L. Vanzo, S. Zerbini, Is the multiplicative anomaly dependent on the regularization? arXiv: hep-th/9804071 (1998)

  80. E. Elizalde, A. Filippi, L. Vanzo, S. Zerbini, Is the multiplicative anomaly relevant? arXiv: hep-th/9804072 (1998)

  81. E. Elizalde, G. Cognola, S. Zerbini, Nucl. Phys. B 532, 407 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  82. J.J. McKenzie-Smith, D.J. Toms, Phys. Rev. D 58, 105001 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  83. A.A. Bytsenko, F.L. Williams, J. Math. Phys. 39, 1075 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  84. C.M. Bender, S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill, New York, 1978), pp. 261–265

    MATH  Google Scholar 

  85. S. Chowla, A. Selberg, Proc. Natl. Acad. Sci. USA 35, 317 (1949)

    Article  MathSciNet  Google Scholar 

  86. E. Elizalde, J. Phys. A 27, 3775 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  87. E. Elizalde, Commun. Math. Phys. 198, 83 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  88. D.G.C. McKeon, T.N. Sherry, Phys. Rev. Lett. 59, 532 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  89. D.G.C. McKeon, T.N. Sherry, Phys. Rev. D 35, 3854 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  90. E. Elizalde, S. Naftulin, S.D. Odintsov, Phys. Rev. D 49, 2852 (1994)

    Article  ADS  Google Scholar 

  91. R.B. Mann, L. Tarasov, D.G.C. McKeon, T. Steele, Nucl. Phys. B 311, 630 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  92. A.Y. Shiekh, Can. J. Phys. 74, 172 (1996)

    Article  ADS  Google Scholar 

  93. A. Rebhan, Phys. Rev. D 39, 3101 (1989)

    Article  ADS  Google Scholar 

  94. L. Culumovic, M. Leblanc, R.B. Mann, D.G.C. McKeon, T.N. Sherry, Phys. Rev. D 41, 514 (1990)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Elizalde .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Elizalde, E. (2012). Introduction and Outlook. In: Ten Physical Applications of Spectral Zeta Functions. Lecture Notes in Physics, vol 855. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29405-1_1

Download citation

Publish with us

Policies and ethics