Skip to main content
  • 3198 Accesses

Abstract

Consistent with the historical development of sound absorbers, focus in Chap. 4, the first chapter on the fundamentals of sound absorbers, was on passive absorbers. Due to their market dominance, they also predominate in all the standard literature on absorbers and silencers. When combined with conventional foil facings as air-tight protective layers against abrasion, their mass should not exceed a certain limit according to Eq. (4.11) in order to impede as little as possible sound entering the porous material, the actual absorber. Section 6.2 will describe how a very effective broadband absorber for medium frequencies can be produced with only a partial, for example slotted rigid panel covering a porous or fibrous material densely packed behind the entry slots. The present chapter will deal with reactive absorbers which encounter the sound field with an impermeable layer whose mass m″ per unit area is not small but very large compared to the air mass moved with the sound wave according to Eq. (3.2). Such a mass is only able to react with the sound field if rendered excitable as part of a resonance system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bies DA, Hansen CH (1996) Engineering noise control. E & FN Spon, London

    Google Scholar 

  • Chladni EFF (1787) Entdeckungen über die Theorie des Klanges. Weidmanns Erben und Reich Leipzig

    Google Scholar 

  • Cremer L (1981) Physik der Geige. Hirzel, Stuttgart

    Google Scholar 

  • Cremer L, Müller HA (1974) Die wissenschaftlichen Grundlagen der Raumakustik, vol II. Hirzel, Stuttgart

    Google Scholar 

  • Cremer L, Müller HA (1982) Principles and applications of room acoustics, vol II. Applied Science, London

    Google Scholar 

  • DIN EN ISO 354 (2003) Messung der Schallabsorption in Hallräumen

    Google Scholar 

  • Drotleff H, Zhou X (2001) Attractive room acoustic design for multi-purpose halls. Acustica 87(6):500–504

    Google Scholar 

  • Drotleff H, Zha X, Scherer W (2000) Gelungene Akustik für denkmalgeschützte Räume. Bauzentrum 48(10):96–98

    Google Scholar 

  • Everest FA (1994) The master handbook of acoustics. McGraw-Hill, New York

    Google Scholar 

  • Fasold W, Veres E (2003) Schallschutz + Raumakustik in der Praxis. Bauwesen, Berlin

    Google Scholar 

  • Fasold W, Sonntag W, Winkler H (1987) Bau und Raumakustik. Bauwesen, Berlin

    Google Scholar 

  • Fletcher NH, Rossing TD (1991) The physics of musical instruments. Springer, New York

    Book  Google Scholar 

  • Ford RD, McCormick MA (1969) Panel sound absorbers. J Sound Vib 10(3):411–423

    Article  Google Scholar 

  • Fuchs HV (2001) Alternative fibreless absorbers—New tools and materials for noise control and acoustic comfort. Acustica 87(3):414–422

    Google Scholar 

  • Fuchs HV, Zha X (1996) Wirkungsweise und Auslegungshinweise für Verbund-Platten-Resonatoren. Z Lärmbekämpf 43(1):1–8

    Google Scholar 

  • Fuchs HV, Zha X, Schneider W (1997) Zur Akustik in Büro- und Konferenzräumen. Bauphysik 19(4):105–112

    Google Scholar 

  • Fuchs HV, Späh M, Pommerer M, Schneider W, Roller M (1998) Akustische Gestaltung kleiner Räume bei tiefen Frequenzen. Bauphysik 20(6):181–190

    Google Scholar 

  • Fuchs HV, Eckoldt D, Hemsing J (1999) Alternative sound absorbers for industrial use: acousticians on the quest for alternative attenuators. VGB Power Tech 3, 58–60

    Google Scholar 

  • Fuchs HV, Zha X, Pommerer M (2000) Qualifying freefield and reverberation rooms for frequencies below 100 Hz. Appl Acoust 59:303–322

    Article  Google Scholar 

  • Fuchs HV, Zha X, Krämer M, Zhou X, Eckoldt D, Brandstätt P, Rambausek N, Hanisch R, Leistner P, Leistner M, Zimmermann S, Babuke G (2002, 2003) Schallabsorber und Schalldämpfer. Innovatorium für Maßnahmen zur Lärmbekämpfung und Raumakustik. Parts 1–6. Bauphysik 24(2):102–113; 24(4):218–227; 24(5):286–295; 24(6):361–367; 25(2):80–88; 25(5):261–270

    Google Scholar 

  • Fuchs HV, Zha X, Drotleff H (2005) Relevance and treatment of the low-frequency domain for noise control and acoustic comfort in rooms. Acustica 91(5):920–927

    Google Scholar 

  • Hurlebaus S, Gaul L, Wang JTS (2001) An exact series solution for calculating the eigenfrequencies of orthotropic plates with completely free boundary. J Sound Vib 244(5):747–759

    Article  Google Scholar 

  • Kiesewetter N (1980) Schallabsorption durch Platten-Resonanzen. GesundheitsIngenieur 101(1):57–62

    Google Scholar 

  • Koch M (2003) Schalltechnische Charakterisierung von Verbundplatten-Resonatoren. Diploma thesis at Fraunhofer IBP, Stuttgart

    Google Scholar 

  • Leistner M, Fuchs HV (2004) Supplementary acoustic measures in the conference centre of the Federal Ministry of Economy and Labour. In: Proceedings—CFA/DAGA 2004, Strasbourg, pp. 487–488

    Google Scholar 

  • Lord Rayleigh (1877) Theory of sound. Macmillan, London

    Google Scholar 

  • Lotze E (2006) Luftschallabsorption. In: Schirmer W (ed) Technischer Lärmschutz, Chap. 6. Springer, Berlin

    Google Scholar 

  • Mechel FP (1994) Schallabsorption. In: Heckl M, Müller HA (eds) Taschenbuch der Technischen Akustik, Chap. 19. Springer, Berlin

    Google Scholar 

  • Ritz W (1909) Theorie der Transversalschwingungen einer quadratischen Platte mit freien Rändern. Ann Phys 28:737–786

    Article  MATH  Google Scholar 

  • Schirmer W (2006) Technischer Lärmschutz, Chaps. 4, 11 und 12. Springer, Berlin

    Book  Google Scholar 

  • Zha X, Fuchs HV, Späh M (1996) Messung des effektiven Absorptionsgrades in kleinen Räumen. Rundfunktechn. Mitt 40(3):77–83

    Google Scholar 

  • Zha X, Fuchs HV, Nocke C, Han X (1999) Measurement of an effective absorption coefficient below 100 Hz. Acoustics Bulletin (Jan/Feb 99):5–10

    Google Scholar 

  • Zhou X, Heinz R, Fuchs HV (1998) Zur Berechnung geschichteter Platten- und Lochplatten-Resonatoren. Bauphysik 20(3):87–95

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut V. Fuchs .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fuchs, H.V. (2013). Panel Absorbers. In: Applied Acoustics: Concepts, Absorbers, and Silencers for Acoustical Comfort and Noise Control. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29367-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29367-2_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29366-5

  • Online ISBN: 978-3-642-29367-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics