Skip to main content
  • 3257 Accesses

Abstract

If a sound wave with a sound power Pi, a sound pressure pi, a sound particle velocity vi and a frequency f impinges on an obstacle which is large compared to its wavelength l, it is partially reflected (Pr) (and possibly diffracted and scattered), allowed to pass through (Pt), transmitted as structure-borne sound (Pf), as well as absorbed (Pa), see Fig. 3.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barron M (1993) Auditorium acoustics and architectural design. E & FN Spon, London

    Google Scholar 

  • Cremer L, Müller HA (1974) Die wissenschaftlichen Grundlagen der Raumakustik, vol II. Hirzel, Stuttgart

    Google Scholar 

  • Cremer L, Müller HA (1978) Die wissenschaftlichen Grundlagen der Raumakustik, vol I. Hirzel, Stuttgart

    Google Scholar 

  • Cremer L, Müller HA (1982a) Principles and applications of room acoustics, vol I. Applied Science, London

    Google Scholar 

  • Cremer L, Müller HA (1982b) Principles and applications of room acoustics, vol II. Applied Science, London

    Google Scholar 

  • EN ISO 140 (1997) Measurement of sound insulation in buildings and of building elements

    Google Scholar 

  • EN ISO 354 (2003) Measurement of sound absorption in a reverberation room

    Google Scholar 

  • Fasold W, Veres E (2003) Schallschutz + Raumakustik in der Praxis. Verlag Bauwesen, Berlin

    Google Scholar 

  • Fasold W, Sonntag W, Winkler H (1987) Bau und Raumakustik. Verlag Bauwesen, Berlin

    Google Scholar 

  • Fuchs HV (2007) Der Raum spielt mit—Weniger Schallbelastung durch akustische Gestaltung des Orchesterraumes. Orchester 55(7/8):10–16

    Google Scholar 

  • Fuchs HV, Lamprecht J (2012) Covered broadband absorbers improving functional acoustics in communication rooms. Appl Acoust 74(1): 18-27

    Google Scholar 

  • Fuchs HV, Zha X (1996) Wirkungsweise und Auslegungshinweise für Verbund-Platten-Resonatoren. Z Lärmbekämpf 43(1):1–8

    Google Scholar 

  • Fuchs HV, Späh M, Pommerer M, Schneider W, Roller M (1998) Akustische Gestaltung kleiner Räume bei tiefen Frequenzen. Bauphysik 20(6):181–190

    Google Scholar 

  • Fuchs HV, Zha X, Pommerer M (2000) Qualifying freefield and reverberation rooms for frequencies below 100 Hz. Appl Acoust 59(4):303–322

    Article  Google Scholar 

  • Fuchs HV, Zha X, Zhou X, Drotleff H (2001) Creating low-noise environments in communication rooms. Appl Acoust 62(2):1375–1396

    Article  Google Scholar 

  • Gruhl S, Kurze UJ (2006) Schallausbreitung und Schallschutz in Arbeitsräumen. In: Schirmer W (ed) Technischer Lärmschutz, Chap. 13. VDI-Verlag, Düsseldorf

    Google Scholar 

  • Hohmann R (2009) Materialtechnische Tabellen. In: Fouad NA (ed) Bauphysik-Kalender 2009, Chap. E. Ernst & Sohn, Berlin

    Google Scholar 

  • ISO 3742 (1988) Determination of sound power levels of noise sources

    Google Scholar 

  • ISO 3745 (2003) Determination of sound power levels of noise sources using sound pressure—precision methods for anechoic and semi-anechoic rooms

    Google Scholar 

  • Kuttruff H (1994) Raumakustik. In: Heckl M, Müller HA (eds) Taschenbuch der Technischen Akustik, Chap. 23. Springer, Berlin

    Google Scholar 

  • Kuttruff H (2000) Room acoustics. E&FN Spon, London

    Google Scholar 

  • Lazarus H, Sust CA, Steckel R, Kulka M, Kurtz P (2007) Akustische Grundlagen sprachlicher Kommunikation. Springer, Berlin

    Google Scholar 

  • Lotze E (2006) Luftschalldämmung. In: Schirmer W (ed) Technischer Lärmschutz, Chap. 5. VDI-Verlag, Düsseldorf

    Google Scholar 

  • Möser M (2007) Technische Akustik. Springer, Berlin

    Google Scholar 

  • Piening W (1937) Schalldämpfung der Ansauge- und Auspuffgeräusche von Dieselanlagen auf Schiffen. VDI-Z 81(26):770–776

    Google Scholar 

  • Schirmer W (2006) Technischer Lärmschutz, Kap. 4, 11 und 12. Springer, Berlin

    Book  Google Scholar 

  • Tennhardt HP (1984) Messung von Nachhallzeit, Schallabsorptionsgrad und von Materialkennwerten poröser Absorber. In: Fasold W, Kraak W, Schirmer W (eds) Taschenbuch der Akustik, Sect. 4.4. Verlag Technik, Berlin

    Google Scholar 

  • Zha X, Fuchs HV, Hunecke J (1996) Raum- und bauakustische Gestaltung eines Mehrkanal-Abhörraumes. Rundfunktechn Mitt 40(2):49–57

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut V. Fuchs .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fuchs, H.V. (2013). Sound Absorption for Noise Control and Room-Acoustical Design. In: Applied Acoustics: Concepts, Absorbers, and Silencers for Acoustical Comfort and Noise Control. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29367-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29367-2_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29366-5

  • Online ISBN: 978-3-642-29367-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics