Skip to main content
  • 3109 Accesses

Abstract

The first three chapters of this compendium on applied acoustics describe the acute need for sound damping measures for machines, plants and buildings, pointing out the special low-frequency problem. The following Chaps. 4–9 present an up-to-date overview of different effects and designs of state-of-the-art as well as some novel marketable airborne sound absorbers, focusing on classifying and describing the physical damping mechanisms, which differ greatly in detail. Table 10.1 displays once more the most important ten absorber families and their characteristic frequency ranges, in which their absorption is able to develop particularly well. However, this does not mean that, for example, reactive membrane absorbers or panel absorbers with correspondingly little mass cannot be designed as silencer splitters in ducts for frequencies at about 500 Hz (see Figs. 13.25 and 13.26) or even in the kHz range (see Figs. 13.38 and 13.39) and passive materials with correspondingly larger depths as “bass traps” e.g. in music studios or class rooms for frequencies down to far below 100 Hz, (see Everest, The master handbook of acoustics, 1994) or Sect. 10.3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bedell EH (1936) Some data on a room designed for free-field measurements. J Acoust Soc Am 8(1):118

    Google Scholar 

  • Bork I (2005) Report on the 3rd round robin on acoustical computer simulation—Part I. Acustica 91(6):740–752

    Google Scholar 

  • Brandstätt P, Fuchs HV, Roller M (2002) Novel silencers and absorbers for wind tunnels and acoustic test cells. Noise Control Eng J 50(2):41–49

    Article  Google Scholar 

  • DIN 18 041 (2004) Hörsamkeit in kleinen bis mittelgroßen Räumen

    Google Scholar 

  • DIN 4109 (1989) Schallschutz im Hochbau

    Google Scholar 

  • DIN EN ISO 140 (1997) Messung der Schalldämmung in Gebäuden und von Bauteilen

    Google Scholar 

  • DIN EN ISO 354 (2001) Messung der Schallabsorption in Hallräumen

    Google Scholar 

  • DIN EN ISO 3382 (2000) Messung der Nachhallzeit von Räumen mit Bezug auf andere akustische Parameter

    Google Scholar 

  • DIN EN ISO 7235 (2002) Labormessungen an Schalldämpfern in Kanälen

    Google Scholar 

  • Drotleff H, Zha X, Scherer W (2000) Gelungene Akustik für denkmalgeschützte Räume. Bauzentrum 48(10):96–98

    Google Scholar 

  • Eckoldt D, Hemsing J (1997) Kamin mit eckigem Innenzug als integralem Schalldämpfer. Z Lärmbekämpf 44(4):115–117

    Google Scholar 

  • Everest FA (1994) The master handbook of acoustics. McGraw-Hill, New York

    Google Scholar 

  • Fuchs HV (1985) Die Installationsgeräusche in der neuen DIN 4109, part 5. Haustech Rundsch 5:273–277

    Google Scholar 

  • Fuchs HV (2002) Innovative sound absorption products—new tools and materials for noise control and acoustic comfort. In: Pandalalai (ed) Recent research developments—sound & vibration, part 1. Transworld Research Network, Kerala, pp 203–239

    Google Scholar 

  • Fuchs HV (2003) Neufassung von DIN 18041—ein Weckruf für gute Raumakustik. Bauphysik 25(6):350–357

    Google Scholar 

  • Fuchs HV, Eckoldt D, Essers U, Potthoff J (1992) New design concepts for silencing aeroacoustic wind tunnels. In: DGLR/AIAA 14th Aeroacoustics Conference, Aachen. DGLR Report 92-093, pp 177–186

    Google Scholar 

  • Fuchs HV, Lamprecht J (2013) Covered broadband absorbers improving functional acoustics in communication rooms. Appl Acoust 74(1):18–27

    Google Scholar 

  • Fuchs HV, Renz J (2006) Raumakustische Gestaltung offener Bürolandschaften. Bauphysik 28(5):305–320

    Article  Google Scholar 

  • Fuchs HV, Renz J (2008) Multifunktional: Glas-Systemwände optimieren Akustik, Beleuchtung und Klima in offenen Bürolandschaften. Lüftung Klima Heiz Sanit Gebäudetech HLH 59(5):71–75

    Google Scholar 

  • Fuchs HV, Zha X, Schneider W (1997) Zur Akustik in Büro- und Konferenzräumen. Bauphysik 19(4):105–112

    Google Scholar 

  • Fuchs HV, Eckoldt D, Hemsing J (1999) Alternative sound absorbers for industrial use: Acousticians on the quest for alternative attenuators. VGB Power Technol 79(3):58–60

    Google Scholar 

  • Fuchs HV, Zha X, Zhou X, Drotleff H (2001) Creating low-noise environments in communication rooms. Appl Acoust 62(2):1375–1396

    Article  Google Scholar 

  • Fuchs HV, Zha X, Drotleff H (2005) Relevance and treatment of the low-frequency domain for noise control and acoustic comfort in rooms. Acustica 91(5):920–927

    Google Scholar 

  • Fuchs HV, Lamprecht X, Zha X (2011) Zur Steigerung der Wirkung passiver Absorber: Schall in Raumkanten schlucken! Gesundh Ing 132(5):240–250

    Google Scholar 

  • Fuchs HV, Lamprecht J, Zha X (2012) Lärmbekämpfung in Bildungsstätten: Kanten-Absorber für besseres Verstehen und Lernen. Lärmbekämpfung 6(4):190–200

    Google Scholar 

  • Gödeke H, Fuchs HV (1998) REAPOR—sintered open-pore glass as a high-strength sound absorber. Glastech Ber Sci Technol 71(9):282–284

    Google Scholar 

  • ISO 37 45 (2003) Determination of sound power levels of noise sources using sound pressure—precision methods for anechoic and semi-anechoic rooms

    Google Scholar 

  • Kuttruff H (1994) Raumakustik. In: Heckl M, Müller HA (eds) Taschenbuch der Technischen Akustik, Chap. 23. Springer, Berlin

    Google Scholar 

  • Möser M (2007) Technische Akustik. Springer, Berlin

    Google Scholar 

  • Moll W, Moll A (2011) Schallschutz im Wohnungsbau. Ernst&Sohn, Berlin

    Google Scholar 

  • Mechel FP (1994) Schallabsorption. In: Heckl M, Müller HA (eds) Taschenbuch der Technischen Akustik, Chap. 19. Springer, Berlin

    Google Scholar 

  • Niermann A, Sprenger-Pieper A (2009) Akustik an der richtigen Stelle. Trockenbau Akust 26(10):22–26

    Google Scholar 

  • Potthoff J, Essers U, Eckoldt D, Fuchs HV, Helfer M (1994) Der neue Aeroakustik-Fahrzeugwindkanal der Universität Stuttgart. Automobiltechn. Z. 96 (7/8), pp 438–447

    Google Scholar 

  • Stüber B, Mühle CH, Fritz KR (1994) Strömungsgeräusche. In: Heckl M, Müller HA (eds) Taschenbuch der Technischen Akustik, Chap. 9. Springer, Berlin

    Google Scholar 

  • VDI-Richtlinie 2081 (2001) Geräuscherzeugung und Lärmminderung in raumlufttechnischen Anlagen

    Google Scholar 

  • Zha X, Fuchs HV, Späh M (1998) Ein neues Konzept für akustische Freifeldräume. Rundfunktechn Mitt 42(3):81–91

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut V. Fuchs .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fuchs, H.V. (2013). Integrated and Integrating Sound Absorbers. In: Applied Acoustics: Concepts, Absorbers, and Silencers for Acoustical Comfort and Noise Control. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29367-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29367-2_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29366-5

  • Online ISBN: 978-3-642-29367-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics