Skip to main content
  • 3194 Accesses

Abstract

Exposure to noise pollution is continually growing. Even in highly developed countries, traffic noise has been increasing 0.2–0.3 dB(A) a year despite stricter regulations having reduced emission power levels LW of passenger cars, motorcycles and trucks in Europe on average 6, 9, respectively 12 dB(A) in the last 20 years. The decisive immission level is rising particularly due to surging traffic on an increasingly denser grid of streets, roads and highways. Noise disturbance from air traffic has developed similarly: successful noise reduction (ΔL in Eq. (1.1)) at individual sources (LW) has been more than counterbalanced worldwide by their increasing number (n). According to the publications of the Umweltbundesamt (Federal Environmental Agency), see e.g. Ortscheid (2003), the number of people suffering from exposure to noise pollution in Germany has more than doubled from 30 % in 1965 to about 70 % in 2003. The percentage due to motor vehicle traffic, the main culprit, rose between 1988 (Fig. 1.1) and 2002 from 55 to about 65 %, due to air traffic from 37 to close to 40 % and due to rail traffic from 17 to over 20 %, with rising tendency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Fuchs HV (2001a) From advanced acoustic research to novel silencing procedures and innovative sound treatments. Acustica 87(3):407–413

    Google Scholar 

  • Fuchs HV (2001b) Alternative fibreless absorbers—new tools and materials for noise control and acoustic comfort. Acustica 87(3):414–422

    Google Scholar 

  • Fuchs HV, Möser M (2004) Schallabsorber. In: Müller G, Möser M (eds) Taschenbuch der Technischen Akustik, Chap. 9. Springer, Berlin, pp 247–304

    Chapter  Google Scholar 

  • Fuchs HV, Möser M (2013) Sound absorbers. In: Müller G, Möser M (eds) Handbook of engineering acoustics, Chap. 8. Springer, Berlin (in press)

    Google Scholar 

  • Fuchs HV, Zha X, Krämer M, Zhou X, Eckoldt D, Brandstätt P, Rambausek N, Hanisch R, Leistner P, Leistner M, Zimmermann S, Babuke G (2002, 2003) Schallabsorber und Schalldämpfer. Innovatorium für Maßnahmen zur Lärmbekämpfung und Raumakustik. Parts 1–6. Bauphysik 24(2):102–113; 24(4):218–227; 24(5):286–295; 24(6):361–367; 25(2):80–88; 25(5):261–270

    Google Scholar 

  • Ortscheid J (2003) Weniger Lärmbelastung in der Wohnung und am Arbeitsplatz? Z Lärmbekämpf 50(1):12–13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut V. Fuchs .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fuchs, H.V. (2013). Introduction. In: Applied Acoustics: Concepts, Absorbers, and Silencers for Acoustical Comfort and Noise Control. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29367-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29367-2_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29366-5

  • Online ISBN: 978-3-642-29367-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics