On the Effective Distribution and Maintenance of Knowledge Represented by Complementary Graphs

  • Leszek Kotulski
  • Adam Sędziwy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7190)


Graph transformations are a powerful tool enabling the formal description of the behavior of software systems. In most cases, however, this tool fails due to its low efficiency. This can be overcome by introducing parallel graph transformations. The concept of complementary graphs enables two things: the decomposition of a centralized graph into many cooperating subgraphs, and their parallel transformations. Such a model is very useful in an agent environment, where subgraphs represent an individual knowledge of particular agents; this knowledge may be partially replicated and exchanged between the agents. The rules of a cooperation and an implicit synchronization of a knowledge, represented in this way, have been already defined in [10]. The second very important issue is the way of an initial graph distribution assuming the size criterion: the heuristic method proposed previously succeeds in 60% (i.e. 60% of subgraphs is consistent with the criterion). The method presented in this paper gives over 90% fit.


Multiagent System Transformation Rule Relaxation Method Graph Transformation Graph Grammar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic approaches to graph transformation - part i: Basic concepts and double pushout approach. In: Handbook of Graph Grammars and Computing by Graph Transformations. Foundations, vol. 1, pp. 163–246. World Scientific (1997)Google Scholar
  2. 2.
    Ehrig, H., Heckel, R., Lowe, M., Ribeiro, L., Wagner, A.: Algebraic Approaches to Graph Transformation Part II: Single Pushout and Comparison with Double Pushout Approach. In: Handbook of Graph Grammars and Computing by Graph Transformations. Foundations, vol. 1, pp. 247–312. World Scientific (1997)Google Scholar
  3. 3.
    Flasinski, M.: On the parsing of deterministic graph languages for syntactic pattern recognition. Pattern Recognition 26(1), 1–16 (1993)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Flasinski, M.: Power Properties of NCL Graph Grammars with a Polynomial Membership Problem. Theoretical Computer Science 201, 189–231 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Flasinski, M.: Inference of parsable graph grammar for syntactic pattern recognition. Fundamenta Informaticae 80, 397–412 (2007)MathSciNetGoogle Scholar
  6. 6.
    Kotulski, L.: Parallel Allocation of the Distributed Software using Node Label Controlled Graph Grammars. Automatyka 2(2), 321–338 (2008)Google Scholar
  7. 7.
    Kotulski, L.: Distributed Graphs Transformed by Multiagent System. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 1234–1242. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Kotulski, L.: GRADIS - Multiagent Environment Supporting Distributed Graph Transformations. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part III. LNCS, vol. 5103, pp. 644–653. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Kotulski, L., Sędziwy, A.: Agent Framework For Decomposing a Graph Into the Equally Sized Subgraphs. In: WORLDCOMP 2008 Conference, Foundations of Computer Science, pp. 245–250 (2008)Google Scholar
  10. 10.
    Kotulski, L., Sędziwy, A.: Parallel Graph Transformations with Double Pushout Grammars. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS, vol. 6114, pp. 280–288. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Kotulski, L., Sędziwy, A.: Parallel Graph Transformations Supported by Replicated Complementary Graphs. In: Dobnikar, A., Lotrič, U., Šter, B. (eds.) ICANNGA 2011, Part II. LNCS, vol. 6594, pp. 254–264. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Kotulski, L., Sędziwy, A.: Various agent strategies in the graph partioninig optimization in the GRADIS framework. In: Information systems architecture and technology: models of the organisation’s risk management. Oficyna Wydawnicza Politechniki Wrocawskiej, pp. 269–279 (2008)Google Scholar
  13. 13.
    Kotulski, L., Sędziwy, A.: On the Complexity of Coordination of Parallel Graph Transformations. In: Proceedings at the Fourth International Conference on Dependability of Computer Systems DepCoS, RELCOMEX 2009, pp. 279–289. IEEE Computer Society Order Number P3674 (2009)Google Scholar
  14. 14.
    Kotulski, L., Sędziwy, A.: GRADIS - the multiagent environment supported by graph transformations. Simulation Modelling Practice and Theory 18(10), 1515–1525 (2010)CrossRefGoogle Scholar
  15. 15.
    Kreowski, H.J., Kluske, S.: Graph Multiset Transformation as a Framework for Massive Parallel Computation. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 351–365. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Kreowski, H.-J., Kuske, S.: Autonomous Units and Their Semantics – The Concurrent Case. In: Engels, G., Lewerentz, C., Schäfer, W., Schürr, A., Westfechtel, B. (eds.) Nagl Festschrift. LNCS, vol. 5765, pp. 102–120. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Leszek Kotulski
    • 1
  • Adam Sędziwy
    • 1
  1. 1.Institute of AutomaticsAGH University of Sciences and TechnologyKrakówPoland

Personalised recommendations