Paraconsistent Reasoning for Semantic Web Agents

  • Linh Anh Nguyen
  • Andrzej Szałas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7190)


Description logics refer to a family of formalisms concentrated around concepts, roles and individuals. They are used in many multiagent and Semantic Web applications as a foundation for specifying knowledge bases and reasoning about them. Among them, one of the most important logics is \(\mathcal{SROIQ}\), providing the logical foundation for the OWL 2 Web Ontology Language recommended by W3C in October 2009.

In the current paper we address the problem of inconsistent knowledge. Inconsistencies may naturally appear in the considered application domains, for example as a result of fusing knowledge from distributed sources. We introduce a number of paraconsistent semantics for \(\mathcal{SROIQ}\), including three-valued and four-valued semantics. The four-valued semantics reflects the well-known approach introduced in [5,4] and is considered here for comparison reasons only. We also study the relationship between the semantics and paraconsistent reasoning in \(\mathcal{SROIQ}\) through a translation into the traditional two-valued semantics. Such a translation allows one to use existing tools and reasoners to deal with inconsistent knowledge.


Description Logic Conjunctive Query Paraconsistent Logic Traditional Semantic Inconsistent Knowledge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amo, S., Pais, M.S.: A paraconsistent logic approach for querying inconsistent databases. International Journal of Approximate Reasoning 46, 366–386 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): Description Logic Handbook. Cambridge University Press (2002)Google Scholar
  3. 3.
    Baader, F., Nutt, W.: Basic description logics. In: Baader, et al. (eds.) [2], pp. 47–100Google Scholar
  4. 4.
    Belnap, N.D.: How a computer should think. In: Ryle, G. (ed.) Contemporary Aspects of Philosophy, pp. 30–55. Oriel Press, Stocksfield (1977)Google Scholar
  5. 5.
    Belnap, N.D.: A useful four-valued logic. In: Eptein, G., Dunn, J.M. (eds.) Modern Uses of Many Valued Logic, pp. 8–37. Reidel (1977)Google Scholar
  6. 6.
    Besnard, P., Hunter, A.: Quasi-Classical Logic: Non-Trivializable Classical Reasoning from Incosistent Information. In: Froidevaux, C., Kohlas, J. (eds.) ECSQARU 1995. LNCS, vol. 946, pp. 44–51. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  7. 7.
    Béziau, J.-Y., Carnielli, W., Gabbay, D.M. (eds.): Handbook of Paraconsistency. Logic and Cognitive Systems, vol. 9. College Publications (2007)Google Scholar
  8. 8.
    Bloesch, A.: A tableau style proof system for two paraconsistent logics. Notre Dame Journal of Formal Logic 34(2), 295–301 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Doherty, P., Łukaszewicz, W., Skowron, A., Szałas, A.: Knowledge Representation Techniques. A Rough Set Approach. Studies in Fuziness and Soft Computing, vol. 202. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  10. 10.
    Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible \(\mathcal{SROIQ}\). In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) Proceedings of KR 2006, pp. 57–67. AAAI Press (2006)Google Scholar
  11. 11.
    Hunter, A.: Paraconsistent logics. In: Gabbay, D., Smets, P. (eds.) Handbook of Defeasible Reasoning and Uncertain Information, pp. 11–36. Kluwer (1998)Google Scholar
  12. 12.
    Hunter, A.: Reasoning with contradictory information using quasi-classical logic. J. Log. Comput. 10(5), 677–703 (2000)zbMATHCrossRefGoogle Scholar
  13. 13.
    Kleene, S.C.: Introduction to Metamathematics. D. Van Nostrand, Princeton (1952)Google Scholar
  14. 14.
    Ma, Y., Hitzler, P.: Paraconsistent Reasoning for OWL 2. In: Polleres, A., Swift, T. (eds.) RR 2009. LNCS, vol. 5837, pp. 197–211. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Ma, Y., Hitzler, P., Lin, Z.: Paraconsistent reasoning for expressive and tractable description logics. In: Proceedings of Description Logics (2008)Google Scholar
  16. 16.
    Małuszyński, J., Szałas, A.: Computational aspects of paraconsistent query language 4QL. Journal of Applied Non-classical Logics 21(2), 211–232 (2011)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Małuszyński, J., Szałas, A.: Living with Inconsistency and Taming Nonmonotonicity. In: Furche, T. (ed.) Datalog 2010. LNCS, vol. 6702, pp. 384–398. Springer, Heidelberg (2011)Google Scholar
  18. 18.
    Małuszyński, J., Szałas, A., Vitória, A.: Paraconsistent Logic Programs with Four-Valued Rough Sets. In: Chan, C.-C., Grzymala-Busse, J.W., Ziarko, W.P. (eds.) RSCTC 2008. LNCS (LNAI), vol. 5306, pp. 41–51. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Meghini, C., Straccia, U.: A relevance terminological logic for information retrieval. In: Proceedings of SIGIR 1996, pp. 197–205. ACM (1996)Google Scholar
  20. 20.
    Nardi, D., Brachman, R.J.: An introduction to description logics. In: Baader, et al. (eds.) [2], pp. 5–44Google Scholar
  21. 21.
    Nguyen, L.A.: Paraconsistent and Approximate Semantics for the OWL 2 Web Ontology Language. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS (LNAI), vol. 6086, pp. 710–720. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Nguyen, L.A., Szałas, A.: Three-Valued Paraconsistent Reasoning for Semantic Web Agents. In: Jędrzejowicz, P., Nguyen, N.T., Howlet, R.J., Jain, L.C. (eds.) KES-AMSTA 2010, Part I. LNCS, vol. 6070, pp. 152–162. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Nguyen, N.T.: Using distance functions to solve representation choice problems. Fundam. Inform. 48(4), 295–314 (2001)Google Scholar
  24. 24.
    Nguyen, N.T.: Consensus system for solving conflicts in distributed systems. Inf. Sci. 147(1-4), 91–122 (2002)zbMATHCrossRefGoogle Scholar
  25. 25.
    Nguyen, N.T.: Inconsistency of knowledge and collective intelligence. Cybernetics and Systems 39(6), 542–562 (2008)zbMATHCrossRefGoogle Scholar
  26. 26.
    Nguyen, N.T., Truong, H.B.: A Consensus-Based Method for Fuzzy Ontology Integration. In: Pan, J.-S., Chen, S.-M., Nguyen, N.T. (eds.) ICCCI 2010, Part II. LNCS, vol. 6422, pp. 480–489. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. 27.
    Odintsov, S.P., Wansing, H.: Inconsistency-tolerant description logic. part II: A tableau algorithm for CACLc. Journal of Applied Logic 6(3), 343–360 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Straccia, U.: A Sequent Calculus for Reasoning in Four-Valued Description Logics. In: Galmiche, D. (ed.) TABLEAUX 1997. LNCS, vol. 1227, pp. 343–357. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  29. 29.
    Vitória, A., Maluszyński, J., Szałas, A.: Modeling and reasoning in paraconsistent rough sets. Fundamenta Informaticae 97(4), 405–438 (2009)zbMATHMathSciNetGoogle Scholar
  30. 30.
    Zhang, X., Lin, Z., Wang, K.: Towards a Paradoxical Description Logic for the Semantic Web. In: Link, S., Prade, H. (eds.) FoIKS 2010. LNCS, vol. 5956, pp. 306–325. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  31. 31.
    Zhang, X., Qi, G., Ma, Y., Lin, Z.: Quasi-classical semantics for expressive description logics. In: Proceedings of Description Logics (2009)Google Scholar
  32. 32.
    Zhang, X., Zhang, Z., Lin, Z.: An argumentative semantics for paraconsistent reasoning in description logic ALC. In: Proceedings of Description Logics (2009)Google Scholar
  33. 33.
    Zhang, X., Zhang, Z., Xu, D., Lin, Z.: Argumentation-Based Reasoning with Inconsistent Knowledge Bases. In: Farzindar, A., Kešelj, V. (eds.) Canadian AI 2010. LNCS, vol. 6085, pp. 87–99. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Linh Anh Nguyen
    • 1
  • Andrzej Szałas
    • 1
    • 2
  1. 1.Institute of InformaticsUniversity of WarsawWarsawPoland
  2. 2.Dept. of Computer and Information ScienceLinköping UniversityLinköpingSweden

Personalised recommendations