Skip to main content

Two-Dimensional Range Diameter Queries

  • Conference paper
LATIN 2012: Theoretical Informatics (LATIN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7256))

Included in the following conference series:

Abstract

Given a set of n points in the plane, range diameter queries ask for the furthest pair of points in a given axis-parallel rectangular range. We provide evidence for the hardness of designing space-efficient data structures that support range diameter queries by giving a reduction from the set intersection problem. The difficulty of the latter problem is widely acknowledged and is conjectured to require nearly quadratic space in order to obtain constant query time, which is matched by known data structures for both problems, up to polylogarithmic factors. We strengthen the evidence by giving a lower bound for an important subproblem arising in solutions to the range diameter problem: computing the diameter of two convex polygons, that are separated by a vertical line and are preprocessed independently, requires almost linear time in the number of vertices of the smaller polygon, no matter how much space is used. We also show that range diameter queries can be answered much more efficiently for the case of points in convex position by describing a data structure of size O(n log n) that supports queries in O(log n) time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P.K., Erickson, J.: Geometric range searching and its relatives. In: Advances in Discrete and Computational Geometry. Contemporary Mathematics, vol. 223, pp. 1–56. AMS (1999)

    Google Scholar 

  2. Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Approximating extent measures of points. Journal of the ACM 51(4), 606–635 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aronov, B., Bose, P., Demaine, E.D., Gudmundsson, J., Iacono, J., Langerman, S., Smid, M.: Data Structures for Halfplane Proximity Queries and Incremental Voronoi Diagrams. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 80–92. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Avis, D.: Diameter partitioning. Discrete & Computational Geometry 1(1), 265–276 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Avis, D., Toussaint, G.T., Bhattacharya, B.K.: On the multimodality of distances in convex polygons. Computers & Mathematics with Applications 8(2), 153–156 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barequet, G., Har-Peled, S.: Efficiently approximating the minimum-volume bounding box of a point set in three dimensions. Journal of Algorithms 38(1), 91–109 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Capoyleas, V., Rote, G., Woeginger, G.J.: Geometric clusterings. Journal of Algorithms 12(2), 341–356 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chan, T.M., Larsen, K.G., Pǎtraşcu, M.: Orthogonal range searching on the RAM, revisited. In: Proc. 27th Symp. on Comp. Geometry, pp. 1–10 (2011)

    Google Scholar 

  9. Cohen, H., Porat, E.: Fast set intersection and two-patterns matching. Theoretical Computer Science 411(40-42), 3795–3800 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cohen, H., Porat, E.: On the hardness of distance oracle for sparse graph. The Computing Research Repository (arXiv), abs/1006.1117 (2010)

    Google Scholar 

  11. Edelsbrunner, H.: Computing the extreme distances between two convex polygons. Journal of Algorithms 6(2), 213–224 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  12. Faloutsos, C., Lin, K.-I.: FastMap: A fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets. In: Proc. ACM SIGMOD Int. Conf. on Management of Data, pp. 163–174 (1995)

    Google Scholar 

  13. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geometry problems. In: Proc. 16th STOC, pp. 135–143 (1984)

    Google Scholar 

  14. Gupta, P.: Algorithms for Range-Aggregate Query Problems Involving Geometric Aggregation Operations. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 892–901. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Gupta, P., Janardan, R., Kumar, Y., Smid, M.H.M.: Data structures for range-aggregate extent queries. In: Proc. 20th CCCG, pp. 7–10 (2008)

    Google Scholar 

  16. Har-Peled, S.: A practical approach for computing the diameter of a point set. In: Proc. 17th Symp. on Comp. Geometry, pp. 177–186. ACM (2001)

    Google Scholar 

  17. Har-Peled, S., Wang, Y.: Shape fitting with outliers. SIAM Journal on Computing 33(2), 269–285 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hong, S., Song, B., Lee, S.-H.: Efficient Execution of Range-Aggregate Queries in Data Warehouse Environments. In: Kunii, H.S., Jajodia, S., Sølvberg, A. (eds.) ER 2001. LNCS, vol. 2224, pp. 299–310. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  19. Miltersen, P.B., Nisan, N., Safra, S., Wigderson, A.: On data structures and asymmetric communication complexity. Journal of Computer and System Sciences 57(1), 37–49 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nekrich, Y., Smid, M.H.M.: Approximating range-aggregate queries using coresets. In: Proc. 22nd CCCG, pp. 253–256 (2010)

    Google Scholar 

  21. Preparata, F., Shamos, M.: Computational geometry: an introduction. Texts and monographs in computer science, Section 4.2.3. Springer, Heidelberg (1991)

    Google Scholar 

  22. Pǎtraşcu, M., Roditty, L.: Distance oracles beyond the Thorup-Zwick bound. In: Proc. 51st FOCS, pp. 815–823 (2010)

    Google Scholar 

  23. Rahul, S., Das, A.S., Rajan, K.S., Srinathan, K.: Range-Aggregate Queries Involving Geometric Aggregation Operations. In: Katoh, N., Kumar, A. (eds.) WALCOM 2011. LNCS, vol. 6552, pp. 122–133. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Davoodi, P., Smid, M., van Walderveen, F. (2012). Two-Dimensional Range Diameter Queries. In: Fernández-Baca, D. (eds) LATIN 2012: Theoretical Informatics. LATIN 2012. Lecture Notes in Computer Science, vol 7256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29344-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29344-3_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29343-6

  • Online ISBN: 978-3-642-29344-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics