Skip to main content

When Will You Be at the Office? Predicting Future Locations and Times

  • Conference paper
Mobile Computing, Applications, and Services (MobiCASE 2010)

Abstract

The purpose of this paper is to predict people’s future locations or when they will be at given locations. These predictions support proactive, context-aware and social applications. Markov models have been shown to be effective predictors of someone’s next location [1]. This paper incorporates temporal information in order to predict future locations or the times when someone will be at a given location. Previous models use sequences of location symbols and apply Markov-based algorithms to predict the next location symbol. In our model, we embed temporal information within the sequence of location symbols. To predict a future location, we use the temporal information as the previous state (or context) in the Markov model to predict the location that is most likely at that given time. To predict when someone will be at a location, we use the location as the context and predict the time(s) the person will be at that location. The model produces up to 91% accuracy for predicting locations, and less than 10% accuracy for predicting times. We show that prediction of location and prediction of time are two very different problems, because the number of predictions produced by the Markov model differ greatly between the two variables. A heuristic algorithm is proposed which incorporates additional context to improve predictions of future times to 43%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Song, L., Kotz, D., Jain, R., He, X.: Evaluating location predictors with extensive Wi-Fi mobility data. In: Proc. INFOCOMM, pp. 1414–1424. IEEE, Hong Kong (2004)

    Google Scholar 

  2. Satyanarayanan, M.: Pervasive computing: vision and challenges. IEEE Personal Communications 8, 10–17 (2001)

    Article  Google Scholar 

  3. UCSD Wireless Topology Discovery Trace, http://sysnet.ucsd.edu/wtd/

  4. Bellotti, V., Begole, B., Chi, E.H., Ducheneaut, N., Fang, J., Isaacs, E., King, T., Newman, M.W., Partridge, K., Price, B., Rasmussen, P., Roberts, M., Schiano, D.J., Walendowski, A.: Activity-based serendipitous recommendations with the Magitti mobile leisure guide. In: Proc. CHI. ACM, Florence (2008)

    Google Scholar 

  5. Patterson, D.J., Liao, L., Gajos, K., Collier, M., Livic, N., Olson, K., Wang, S., Fox, D., Kautz, H.: Opportunity Knocks: A System to Provide Cognitive Assistance with Transportation Services. In: Davies, N., Mynatt, E.D., Siio, I. (eds.) UbiComp 2004. LNCS, vol. 3205, pp. 433–450. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Estrin, D., Chandy, K.M., Young, R.M., Smarr, L., Odlyzko, A., Clark, D., Reding, V., Ishida, T., Sharma, S., Cerf, V.G., Lzle, U., Barroso, L.A., Mulligan, G., Hooke, A., Elliott, C.: Internet Predictions. IEEE Internet Computing 14, 12–42 (2010)

    Article  Google Scholar 

  7. Chang, Y.-J., Liu, H.-H., Wang, T.-Y.: Mobile social networks as quality of life technology for people with severe mental illness. IEEE Wireless Communications 16, 34–40 (2009)

    Article  Google Scholar 

  8. Axup, J., Viller, S., MacColl, I., Cooper, R.: Lo-Fi Matchmaking: A Study of Social Pairing for Backpackers. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 351–368. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Ashbrook, D., Starner, T.: Using GPS to learn significant locations and predict movement across multiple users. Personal and Ubiquitous Computing 7, 275–286 (2003)

    Article  Google Scholar 

  10. Begole, J.B., Tang, J.C., Hill, R.: Rhythm modeling, visualizations and applications. In: Proc. UIST, pp. 11–20. ACM Press, Vancouver (2003)

    Google Scholar 

  11. Chellapa, R., Jennings, A., Shenoy, N.: A comparative study of mobility prediction in fixed wireless networks and mobile ad hoc networks. In: Proc. ICC, pp. 891–895 (2003)

    Google Scholar 

  12. Cheng, C., Jain, R., van den Berg, E.: Location prediction algorithms for mobile wireless systems. CRC Press, Inc. (2003)

    Google Scholar 

  13. De Rosa, F., Malizia, A., Mecella, M.: Disconnection prediction in mobile ad hoc networks for supporting cooperative work. IEEE Pervasive Computing 4, 62–70 (2005)

    Article  Google Scholar 

  14. Erbas, F., Kyamakya, K., Steuer, J., Jobmann, K.: On the user profiles and the prediction of user movements in wireless networks. In: Proc. PIMRC, pp. 2282–2286. IEEE, Lisbon (2002)

    Google Scholar 

  15. Hadjiefthymiades, S., Papayiannis, S., Merakos, L.: Using path prediction to improve TCP performance in wireless/mobile communications. IEEE Communications Magazine 40, 54–61 (2002)

    Article  Google Scholar 

  16. Pack, S., Choi, Y.: Fast handoff scheme based on mobility prediction in public wireless LAN systems. IEE Proceedings on Communications 151, 489–495 (2004)

    Article  Google Scholar 

  17. Wu, S.-Y., Fan, H.-H.: Activity-Based Proactive Data Management in Mobile Environments. IEEE Transactions on Mobile Computing 9, 390–404 (2010)

    Article  Google Scholar 

  18. Chan, J., Seneviratne, A.: A Practical User Mobility Prediction Algorithm for Supporting Adaptive QoS in Wireless Networks. In: Proc. ICON, pp. 104–111. IEEE Computer Society (1999)

    Google Scholar 

  19. Das, S.K., Cook, D.J., Battacharya, A., Heierman III, E.O.: The role of prediction algorithms in the MavHome smart home architecture. IEEE Wireless Communications 9, 77–84 (2002)

    Article  Google Scholar 

  20. Petzold, J., Bagci, F., Trumler, W., Ungerer, T.: Next Location Prediction Within a Smart Office Building. In: Proc. Pervasive 2005, Munich, Germany (2005)

    Google Scholar 

  21. Roy, A., Das, S.K., Basu, K.: A Predictive Framework for Location-Aware Resource Management in Smart Homes. IEEE Transactions on Mobile Computing 6, 1270–1283 (2007)

    Article  Google Scholar 

  22. Ziebart, B.D., Maas, A.L., Dey, A.K., Bagnell, J.A.: Navigate like a cabbie: probabilistic reasoning from observed context-aware behavior. In: Proc. UbiComp, pp. 322–331. ACM, Seoul (2008)

    Chapter  Google Scholar 

  23. Facebook Really Wants to Know Where You Are, Considers Buying Loopt, http://www.fastcompany.com/1562563/loopt-facebook-acquisition-rumor-location-based-advertising-social-networking

  24. Location, Location, Location, http://blog.twitter.com/2009/08/location-location-location.html

  25. Barkuus, L., Dey, A.: Location-Based Services for Mobile Telephony: a Study of Users’ Privacy Concerns. In: Proc. INTERACT, pp. 709–712. IOS Press, Zurich (2003)

    Google Scholar 

  26. Iachello, G., Smith, I., Consolvo, S., Abowd, G.D., Hughes, J., Howard, J., Potter, F., Scott, J., Sohn, T., Hightower, J., LaMarca, A.: Control, Deception, and Communication: Evaluating the Deployment of a Location-Enhanced Messaging Service. In: Beigl, M., Intille, S.S., Rekimoto, J., Tokuda, H. (eds.) UbiComp 2005. LNCS, vol. 3660, pp. 213–231. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  27. Voong, M., Beale, R.: Representing location in location-based social awareness systems. In: Proc. BCS-HCI, pp. 139–142. British Computer Society, Liverpool (2008)

    Google Scholar 

  28. Dufková, K., Boudec, J.-Y.L., Kencl, L., Bjelica, M.: Predicting User-Cell Association in Cellular Networks from Tracked Data. In: Fuller, R., Koutsoukos, X.D. (eds.) MELT 2009. LNCS, vol. 5801, pp. 19–33. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  29. Begleiter, R., El-Yaniv, R., Yona, G.: On Prediction Using Variable Order Markov Models. Journal of Artificial Intelligence Research 22, 385–421 (2004)

    MathSciNet  MATH  Google Scholar 

  30. Cleary, J.G., Teahan, W.J., Witten, I.H.: Unbounded length contexts for PPM. In: Proc. Data Compression Conference, Snowbird, UT, pp. 52–61 (1995)

    Google Scholar 

  31. LaMarca, A., Chawathe, Y., Consolvo, S., Hightower, J., Smith, I., Scott, J., Sohn, T., Howard, J., Hughes, J., Potter, F., Tabert, J., Powledge, P., Borriello, G., Schilit, B.: Place Lab: Device Positioning Using Radio Beacons in the Wild. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 116–133. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  32. Skyhook Wireless, http://www.skyhookwireless.com

  33. Krumm, J., Horvitz, E.: LOCADIO: inferring motion and location from Wi-Fi signal strengths. In: Proc. MOBIQUITOUS, pp. 4–13 (2004)

    Google Scholar 

  34. Bolliger, P.: Redpin - adaptive, zero-configuration indoor localization through user collaboration. In: Proc. MELT, pp. 55–60. ACM, San Francisco (2008)

    Google Scholar 

  35. Yang, G.: Discovering Significant Places from Mobile Phones – A Mass Market Solution. In: Fuller, R., Koutsoukos, X.D. (eds.) MELT 2009. LNCS, vol. 5801, pp. 34–49. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  36. Ashbrook, D., Starner, T.: Learning significant locations and predicting user movement with GPS. In: Proc. International Symposium on Wearable Computers, pp. 101–108 (2002)

    Google Scholar 

  37. Arithmetic Coding + Statistical Modeling = Data Compression, http://www.dogma.net/markn/articles/arith/part2.html

  38. Burbey, I., Martin, T.L.: Predicting future locations using prediction-by-partial-match. In: Proc. MELT, pp. 1–6. ACM Press, San Francisco (2008)

    Google Scholar 

  39. Antifakos, S., Kern, N., Schiele, B., Schwaninger, A.: Towards improving trust in context-aware systems by displaying system confidence. In: Proc. MobileHCI, pp. 9–14. ACM Press, Salzburg (2005)

    Google Scholar 

  40. Gopalratnam, K., Cook, D.J.: Online Sequential Prediction via Incremental Parsing: The Active LeZi Algorithm. Intelligent Systems 22, 52–58 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Burbey, I., Martin, T.L. (2012). When Will You Be at the Office? Predicting Future Locations and Times. In: Gris, M., Yang, G. (eds) Mobile Computing, Applications, and Services. MobiCASE 2010. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 76. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29336-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29336-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29335-1

  • Online ISBN: 978-3-642-29336-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics