Skip to main content

Counter-Propagating Traps by Optical Phase-Conjugation

  • Chapter
  • First Online:
Structured Light Fields

Part of the book series: Springer Theses ((Springer Theses))

  • 1365 Accesses

Abstract

“Classical" optical tweezers employ one single laser beam that is strongly focussed by one lens. In spite of a long list of advantages, which are discussed comprehensively in Chap. 2, there are a number of situations where the requirement for high numerical aperture objectives is a serious obstacle or where the inherent asymmetry of the configuration is an issue. One well known solution is counter-propagating optical traps, which are widely used where long working distances, axially symmetric trapping potentials, or standing light waves are desired.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The experiments discussed in this chapter were performed in collaboration with Mr Konrad Berghoff within the framework of his diploma thesis (Berghoff 2010) and have resulted in a joint publication (Woerdemann et al. 2010).

  2. 2.

    Remember that numerical aperture NA and focal length are connected as \({\rm NA}=n \sin(\Uptheta/2)=n\sin\arctan(a/f)\approx na/f\) for a lens with the aperture angle \(\Uptheta\) and the aperture diameter \(2a\) (Born and Wolf 1986).

  3. 3.

    The term “\({\rm cc}\)” indicates the complex conjugate, necessary to describe a real wave in the mathematical and physical sense.

References

  • Ashkin A (1970) Acceleration and trapping of particles by radiation pressure. Phys Rev Lett 24:156–159

    Article  ADS  Google Scholar 

  • Ashkin A (2000) History of optical trapping and manipulation of small-neutral particle, atoms, and molecules. IEEE J Sel Top Quantum Electron 6:841–856

    Article  Google Scholar 

  • Ashkin A, Dziedzic J (1985) Observation of radiation-pressure trapping of particles by alternating light-beams. Phys Rev Lett 54:1245–1248

    Article  ADS  Google Scholar 

  • Ashkin A, Dziedzic J, Bjorkholm J, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11:288–290

    Article  ADS  Google Scholar 

  • Berghoff K (2010) Erzeugung von Mehrfachfallen und komplexen Fanggeometrien in dynamischen phasenkonjugierten gegenläufigen optischen Fallen. Master’s thesis, Westfälische Wilhelms-Universität Münster

    Google Scholar 

  • Born M, Wolf E (1986) Principles of optics. Pergamon Press, Oxford

    Google Scholar 

  • Bowman R, Jesacher A, Thalhammer G, Gibson G, Ritsch-Marte M, Padgett M (2011) Position clamping in a holographic counterpropagating optical trap. Opt Express 19:9908–9914

    Article  ADS  Google Scholar 

  • Boyd R (1992) Nonlinear optics. Academic, San Diego

    Google Scholar 

  • Chiou A (1999) Photorefractive phase-conjugate optics for image processing, trapping, and manipulation of microscopic objects. IEEE Proc 87:2074–2085

    Article  Google Scholar 

  • Constable A, Kim J, Mervis J, Zarinetchi F, Prentiss M (1993) Demonstration of a fiber-optical light-force trap. Opt Lett 18:1867–1869

    Article  ADS  Google Scholar 

  • Croningolomb M (1991) Nonlinear optics and phase conjugation in photorefractive materials. J Cryst Growth 109:345–352

    Article  Google Scholar 

  • Dam J, Rodrigo P, Perch-Nielsen I, Alonzo C, Glückstad J (2007a) Computerized “drag-and-drop" alignment of GPC-based optical micromanipulation system. Opt Express 15:1923–1931

    Article  ADS  Google Scholar 

  • Dam J, Rodrigo P, Perch-Nielsen I, Glückstad J (2007b) Fully automated beam-alignment and single stroke guided manual alignment of counter-propagating multi-beam based optical micromanipulation systems. Opt Express 15:7968–7973

    Article  ADS  Google Scholar 

  • Dholakia K, Reece P (2006) Optical micromanipulation takes hold. Nano Today 1:18–27

    Article  Google Scholar 

  • Feinberg J (1982) Self-pumped, continuous-wave phase conjugator using internal-reflection. Opt Lett 7:486–488

    Article  ADS  Google Scholar 

  • Feinberg J (1983) Continuous-wave self-pumped phase conjugator with wide field of view. Opt Lett 8:480–482

    Article  ADS  Google Scholar 

  • Feinberg J, Hellwarth R (1980) Phase-conjugating mirror with continuous-wave gain. Opt Lett 5:519–521

    Article  ADS  Google Scholar 

  • Fisher R (ed) (1983) Optical phase conjugation. Academic, New York

    Google Scholar 

  • Guck J, Ananthakrishnan R, Cunningham CC, Käs J (2002) Stretching biological cells with light. J Phys Condens Matter 14:4843–4856

    Article  ADS  Google Scholar 

  • He G (2002) Optical phase conjugation: principles, techniques, and applications. Prog Quantum Electron 26:131–191

    Article  ADS  Google Scholar 

  • Hellwarth R (1977) Generation of time-reversed wave fronts by nonlinear refraction. J Opt Soc Am 67:1–3

    Article  ADS  Google Scholar 

  • Hörner F, Woerdemann M, Müller S, Maier B, Denz C (2010) Full 3D translational and rotational optical control of multiple rod-shaped bacteria. J Biophotonics 3:468–475

    Article  Google Scholar 

  • Jonas A, Zemanek P (2008) Light at work: the use of optical forces for particle manipulation, sorting, and analysis. Electrophoresis 29:4813–4851

    Article  Google Scholar 

  • Martin-Badosa E, Montes-Usategui M, Carnicer A, Andilla J, Pleguezuelos E, Juvells I (2007) Design strategies for optimizing holographic optical tweezers set-ups. J Opt A: Pure Appl Opt 9:S267–S277

    Google Scholar 

  • Neuman K, Block S (2004) Optical trapping. Rev Sci Instrum 75:2787–2809

    Article  ADS  Google Scholar 

  • Neuman K, Chadd E, Liou G, Bergman K, Block S (1999) Characterization of photodamage to Escherichia coli in optical traps. Biophys J 77:2856–2863

    Article  Google Scholar 

  • Petrovic M, Beli M, Denz C, Kivshar Y (2011) Counterpropagating optical beams and solitons. Laser Photonics Rev 5:214–233

    Article  Google Scholar 

  • Rodrigo P, Daria V, Gluckstad J (2005) Four-dimensional optical manipulation of colloidal particles. Appl Phys Lett 86:074103

    Article  ADS  Google Scholar 

  • Rodrigo P, Perch-Nielsen I, Glückstad J (2006) Three-dimensional forces in GPC-based counterpropagating-beam traps. Opt Express 14:5812–5822

    Article  ADS  Google Scholar 

  • Rytz D, Stephens R, Wechsler B, Keirstead M, Baer T (1990) Efficient self-pumped phase conjugation at near-infrared wavelengths using Cobalt-doped \(\hbox{BaTiO}_3\). Opt Lett 15:1279–1281

    Google Scholar 

  • Schonbrun E, Piestun R, Jordan P, Cooper J, Wulff K, Courtial J, Padgett M (2005) 3D interferometric optical tweezers using a single spatial light modulator. Opt Express 13:3777–3786

    Article  ADS  Google Scholar 

  • Sinclair G, Jordan P, Leach J, Padgett M, Cooper J (2004) Defining the trapping limits of holographical optical tweezers. J Mod Opt 51:409–414

    Article  ADS  Google Scholar 

  • Svoboda K, Block SM (1994) Biological applications of optical forces. Annu Rev Biophys Biomol Struct 23:247–285

    Article  Google Scholar 

  • Tauro S, Banas A, Palima D, Glückstad J (2010) Dynamic axial stabilization of counter-propagating beam-traps with feedback control. Opt Express 18:18217–18222

    Article  ADS  Google Scholar 

  • Thalhammer G, Steiger R, Bernet S, Ritsch-Marte M (2011) Optical macro-tweezers: trapping of highly motile micro-organisms. J Opt 13:044024

    Article  ADS  Google Scholar 

  • Wang W, Chiou A, Sonek G, Berns M (1997) Self-aligned dual-beam optical laser trap using photorefractive phase conjugation. J Opt Soc Am B 14:697–704

    Article  ADS  Google Scholar 

  • Woerdemann M, Alpmann C, Denz C (2009) Self-pumped phase conjugation of light beams carrying orbital angular momentum. Opt Express 17:22791–22799

    Article  ADS  Google Scholar 

  • Woerdemann M, Berghoff K, Denz C (2010) Dynamic multiple-beam counter-propagating optical traps using optical phase-conjugation. Opt Express 18:22348–57

    Article  ADS  Google Scholar 

  • Woerdemann M, Gläsener S, Hörner F, Devaux A, De Cola L, Denz C (2010) Dynamic and reversible organization of zeolite L crystals induced by holographic optical tweezers. Adv Mater 22:4176–4179

    Article  Google Scholar 

  • Woerdemann M, Alpmann C, Denz C (2012) Chapter: Three-dimensional particle control by holographic optical tweezers. In: Optical imaging and metrology. Wiley-VCH Verlag, Weinheim (to be published)

    Google Scholar 

  • Xavier J, Boguslawski M, Rose P, Joseph J, Denz C (2010) Reconfigurable optically induced quasicrystallographic three-dimensional complex nonlinear photonic lattice structures. Adv Mater 22:356

    Article  Google Scholar 

  • Xie P, Dai J, Wang P, Zhang H (1997) Self-pumped phase conjugation in photorefractive crystals: reflectivity and spatial fidelity. Phys Rev A 55:3092–3100

    Article  ADS  Google Scholar 

  • Yeh P (1993) Introduction to photorefractive nonlinear optics. Wiley, New York

    Google Scholar 

  • Zemanek P, Jonas A, Sramek L, Liska M (1998) Optical trapping of Rayleigh particles using a Gaussian standing wave. Opt Commun 151:273–285

    Article  ADS  Google Scholar 

  • Zemanek P, Jonas A, Sramek L, Liska M (1999) Optical trapping of nanoparticles and microparticles by a Gaussian standing wave. Opt Lett 24:1448–1450

    Article  ADS  Google Scholar 

  • Zemanek P, Jonas A, Liska M (2002) Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave. J Opt Soc Am A 19:1025–1034

    Article  ADS  Google Scholar 

  • Zemanek P, Jonas A, Jakl P, Jezek J, Sery M, Liska M (2003) Theoretical comparison of optical traps created by standing wave and single beam. Opt Commun 220:401–412

    Article  ADS  Google Scholar 

  • Zozulya A (1993) Fanning and photorefractive self-pumped four-wave mixing geometries. IEEE J Quantum Electron 29:538–555

    Article  ADS  Google Scholar 

  • Zwick S, Haist T, Miyamoto Y, He L, Warber M, Hermerschmidt A, Osten W (2009) Holographic twin traps. J Opt A: Pure Appl Opt 11:034011

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike Woerdemann .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Woerdemann, M. (2012). Counter-Propagating Traps by Optical Phase-Conjugation. In: Structured Light Fields. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29323-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29323-8_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29322-1

  • Online ISBN: 978-3-642-29323-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics