Skip to main content

Holographic Phase Contrast

  • Chapter
  • First Online:
Structured Light Fields

Part of the book series: Springer Theses ((Springer Theses))

  • 1323 Accesses

Abstract

Holographic optical tweezers employ diffractive optical elements (DOEs) in order to generate a multitude of optical traps. The DOE is commonly placed in a Fourier plane with respect to the plane where optical trapping occurs. An alternative to generate multiple optical traps are image-plane methods, where the structuring of the light wave is performed in a plane optically conjugate to the trapping plane. With an image-plane approach, possibly expensive computations of computer-generated holograms can be avoided completely. Furthermore, associated possible drawbacks of the diffractive approach, like losses into the zeroth diffraction order or inhomogeneous traps and ghost traps, are missing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In order to keep the description clear effects of refraction at the interfaces of the medium and absorption inside the medium have been neglected. Neither effect affects the essence of the model and their inclusion is straightforward.

  2. 2.

    Here we neglect thermal generation of electrons.

  3. 3.

    This set of equations is sometimes referred to as “Kukhtarev equations”.

  4. 4.

    The grating parameter \(\chi\) can be changed with the choice of the photorefractive material.

  5. 5.

    High-index particles are particles with a refractive index higher than the surrounding medium while low-index particles are the reverse.

References

  • An X, Psaltis D, Burr G (1999) Thermal fixing of 10,000 holograms in \(\hbox{LiNbO}_3\): Fe. Appl Opt 38:386–393

    Article  ADS  Google Scholar 

  • Anderson D, Lininger D, Feinberg J (1987) Optical tracking novelty filter. Opt Lett 12:123–125

    Article  ADS  Google Scholar 

  • Ashkin A, Boyd G, Dziedzic J, Smith R, Ballmann A, Levinstein J, Nassau K (1966) Optically-induced refractive index inhomogenities in \(\hbox{LiNbO}_3\) and \(\hbox{LiTaO}_3\). Appl Phys Lett 9:72

    Article  ADS  Google Scholar 

  • Berger G (2008) Volume holographic data storage utilizing phase modulations. PhD thesis, Westfälische Wilhelms-Universität Münster

    Google Scholar 

  • Buse K, Adibi A, Psaltis D (1998) Non-volatile holographic storage in doubly doped lithium niobate crystals. Nature 393:665–668

    Article  ADS  Google Scholar 

  • Coufal H, Psaltis D, Sincerbox G (eds) (2000) Holographic data storage. Springer, Berlin

    Google Scholar 

  • Cudney R, Pierce R, Feinberg J (1988) The transient detection microscope. Nature 332:424–426

    Article  ADS  Google Scholar 

  • Curtis J, Koss B, Grier D (2002) Dynamic holographic optical tweezers. Opt Commun 207:169–175

    Article  ADS  Google Scholar 

  • Daria V, Eriksen R, Glückstad J (2003) Dynamic optical manipulation of colloidal systems using a spatial light modulator. J Mod Opt 50:1601–1614

    ADS  Google Scholar 

  • Desyatnikov A, Shvedov V, Rode A, Krolikowski W, Kivshar Y (2009) Photophoretic manipulation of absorbing aerosol particles with vortex beams: theory versus experiment. Opt Express 17:8201–8211

    Article  ADS  Google Scholar 

  • Dufresne E, Grier D (1998) Optical tweezer arrays and optical substrates created with diffractive optics. Rev Sci Instrum 69:1974–1977

    Article  ADS  Google Scholar 

  • Dufresne E, Spalding G, Dearing M, Sheets S, Grier D (2001) Computer-generated holographic optical tweezer arrays. Rev Sci Instrum 72:1810–1816

    Article  ADS  Google Scholar 

  • Eriksen RL, Mogensen PC, Glückstad J (2002) Multiple-beam optical tweezers generated by the generalized phase-contrast method. Opt Lett 27:267–269

    Article  ADS  Google Scholar 

  • Frejlich J, Kamshilin A, Kulikov V, Mokrushina E (1989) Adaptive holographic-interferometry using photorefractive crystals. Opt Commun 70:82–86

    Article  ADS  Google Scholar 

  • Garces-Chavez V, Volke-Sepulveda K, Chavez-Cerda S, Sibbett W, Dholakia K (2002) Transfer of orbital angular momentum to an optically trapped low-index particle. Phys Rev A 66:063402

    Article  ADS  Google Scholar 

  • Glückstad J (1996) Phase contrast image synthesis. Opt. Commun 130:225–230

    ADS  Google Scholar 

  • Glückstad J, Mogensen P (2001) Optimal phase contrast in common-path interferometry. Appl Opt 40:268–282

    Article  ADS  Google Scholar 

  • Hariharan P (1996) Optical holography: principles, techniques and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hesseling C, Woerdemann M, Hermerschmidt A, Denz C (2011) Controlling ghost traps in holographic optical tweezers. Opt Lett 36:3657–3659

    Article  ADS  Google Scholar 

  • Jesacher A, Fürhapter S, Bernet S, Ritsch-Marte M (2004) Diffractive optical tweezers in the Fresnel regime. Opt Express 12:2243

    Article  ADS  Google Scholar 

  • Kogelnik H (1969) Coupled wave theory for thick hologram gratings. AT&T Tech J 48:2909

    Google Scholar 

  • Krishnamachari V (2005) Photorefractive novelty filter microscope: the system and its applications. PhD thesis, Westfälische Wilhelms-Universität Münster

    Google Scholar 

  • Krishnamachari V, Denz C (2004) A phase-triggering technique to extend the phase-measurement range of a photorefractive novelty filter microscope. Appl Phys B 79:497

    Article  Google Scholar 

  • Krishnamachari V, Grothe O, Deitmar H, Denz C (2005) Novelty filtering with a photorefractive lithium-niobate crystal. Appl. Phys Lett 87:071105

    Google Scholar 

  • Kukhtarev N, Markov V, Odulov S, Soskin M, Vinetskii V (1979) Holographic storage in electro-optic crystals 1: steady state. Ferroelectrics 22:949–960

    Article  Google Scholar 

  • Kukhtarev N, Markov V, Odulov S, Soskin M, Vinetskii V (1979) Holographic storage in electro-optic crystals 2: beam-coupling—light amplification. Ferroelectrics 22:961–964

    Article  Google Scholar 

  • MacDonald M, Paterson L, Sibbett W, Dholakia K, Bryant P (2001) Trapping and manipulation of low-index particles in a two-dimensional interferometric optical trap. Opt Lett 26:863–865

    Article  ADS  Google Scholar 

  • Magnusson R, Wang X, Hafiz A, Black T, Tello L, Hajisheikh A, Konecni S, Wilson D (1994) Experiments with photorefractive crystals for holographic interferometry. Opt Eng 33:596–607

    Article  ADS  Google Scholar 

  • McGloin D (2006) Optical tweezers: 20 years on. Philos T Roy Soc A 364:3521–3537

    Article  ADS  MATH  Google Scholar 

  • Mogensen P, Glückstad J (2000) Dynamic array generation and pattern formation for optical tweezers. Opt Commun 175:75–81

    Article  ADS  Google Scholar 

  • Naydenova I, Jallapuram R, Howard R, Martin S, Toal V (2004) Investigation of the diffusion processes in a self-processing acrylamide-based photopolymer system. Appl Opt 43:2900–2905

    Article  ADS  Google Scholar 

  • Polin M, Ladavac K, Lee S, Roichman Y, Grier D (2005) Optimized holographic optical traps. Opt Express 13:5831–5845

    Article  ADS  Google Scholar 

  • Reicherter M, Haist T, Wagemann E, Tiziani H (1999) Optical particle trapping with computer-generated holograms written on a liquid-crystaldisplay. Opt Lett 24:608–610

    Article  ADS  Google Scholar 

  • Rodrigo P, Daria V, Gluckstad J (2005) Four-dimensional optical manipulation of colloidal particles. Appl Phys Lett 86:074103

    Article  ADS  Google Scholar 

  • Sasaki K, Koshioka M, Misawa H, Kitamura N, Masuhara H (1992) Optical trapping of a metal particle and a water droplet by a scanning laser beam. Appl Phys Lett 60:807–809

    Article  ADS  Google Scholar 

  • Sedlatschek M (1998) Neuigkeitsfilter durch photorefraktive Strahlkopplung. PhD thesis, Technische Universität Darmstadt

    Google Scholar 

  • Sedlatschek M, Trumpfheller J, Hartmann J, Müller M, Denz C, Tschudi T (1999) Differentiation and subtraction of amplitude and phase images using a photorefractive novelty filter. Appl Phys B 68:1047

    Article  ADS  Google Scholar 

  • Vahey D (1975) A nonlinear coupled-wave theory of holographic storage in ferroelectric materials. J Appl Phys 46:3510

    Article  ADS  Google Scholar 

  • Vest C (1979) Holographic interferometry. Wiley, New York

    Google Scholar 

  • Volk T, Wöhlecke M (2008) Lithium Niobate—defects, photorefraction and Ferroelectric switching. Springer, Berlin

    Google Scholar 

  • Woerdemann M, Holtmann F, Denz C (2008) Full field particle velocimetry with a photorefractive optical novelty filter. Appl Phys Lett 93:021108

    Article  ADS  Google Scholar 

  • Woerdemann M, Holtmann F, Denz C (2009) Holographic phase contrast for dynamic multiple-beam optical tweezers. J Opt A: Pure Appl Opt 11:034010

    Article  ADS  Google Scholar 

  • Woerdemann M, Alpmann C, Denz C (2012) Three-dimensional particle control by holographic optical tweezers. In: Osten W, Reingand N (eds) Optical imaging and metrology. Wiley-VCH Verlag, Weinheim, to be published

    Google Scholar 

  • Yarrison-Rice J, Rice P, Rowan D (1995) Beam splitter model of two-beam coupling in photorefractive materials. J Mod Opt 42:1971

    Article  ADS  Google Scholar 

  • Yeh P (1993) Introduction to photorefractive nonlinear optics. Wiley, New York

    Google Scholar 

  • Zernike F (1955) How i discovered phase contrast. Science 121:345–349

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike Woerdemann .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Woerdemann, M. (2012). Holographic Phase Contrast. In: Structured Light Fields. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29323-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29323-8_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29322-1

  • Online ISBN: 978-3-642-29323-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics