Skip to main content

Dielectric Detection Using Biochemical Assays

  • Chapter
  • First Online:
Point-of-Care Diagnostics on a Chip

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Point-of-care (POC) diagnostics typically make use of labeling techniques that employ fluorescent, chemiluminescent, redox, or radioactive probes. Although such methods provide high sensitivity, they are complicated because their labeling steps require a significant amount of time and labor in their execution and in the analysis of their results. Thus, the portability, which is meant to be the primary advantage of POC systems, is sacrificed. The use of electronic devices for POC systems circumvents this problem, enabling label-free detection, miniaturization, and low costs. Label-free detection is made possible by direct electrical measurement of the sample molecules, which works by monitoring changes in their intrinsic electrical properties. Miniaturization and the integration of sensors and readout circuitry have been enabled by industrialized microfabrication technology. By integrating the sensors and circuitry onto a monolithic substrate, the fabrication cost can be remarkably reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Wang, Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens. Bioelectron. 21(10), 1887–1892 (2006)

    Article  Google Scholar 

  2. L.J. Kricka, Nucleic acid detection technologies – labels, strategies, and formats. Clin. Chem. 45(4), 453–458 (1999)

    Google Scholar 

  3. J. Fritz, E.B. Cooper, S. Gaudet, P.K. Sorger, and S.R. Manalis, Electronic detection of DNA by its intrinsic molecular charge. Proc. Natl. Acad. Sci. U.S.A. 99, 14142–14146 (2002)

    Article  ADS  Google Scholar 

  4. J.R. Macdonald (ed.), Impedance Spectroscopy (Wiley, New-York, 1987)

    Google Scholar 

  5. I. Rubinstein (ed.), Physical Electrochemistry: Principle, Method and Applications (Marcel Dekker, New-York, 1995)

    Google Scholar 

  6. J. Rickert, W. Göpel, W. Beck, G. Jung, and P. Heiduschka, A ‘mixed’ self-assembled monolayer for an impedimetric immunosensor. Biosens. Bioelectron. 11(8), 757–768 (1996)

    Article  Google Scholar 

  7. S. Hleli, C. Martelet, A. Abdelghani, N. Burais, and N. Jaffrezic-Reuault, Atrazine analysis using an impedimetric immunosensor based on mixed biotinylated self-assembled monolayer. Sens. Actuators B 113(2), 711–717 (2006)

    Article  Google Scholar 

  8. C. Ruan, L. Yang, and Y. Li, Immunobiosensor chips for detection of Escherichia coli O157:H7 using electrochemical impedance spectroscopy. Anal. Chem. 74(18), 4814–4820 (2002)

    Article  Google Scholar 

  9. F. Patolsky, A. Lichtenstein, and I. Willner, Detection of single-base DNA mutations by enzyme-amplified electronic transduction. Nat. Biotechnol. 19(3), 253–257 (2001)

    Article  Google Scholar 

  10. W. Cai, J.R. Peck, D.W. van der Weide, and R.J. Hamers, “Direct electrical detection of hybridization at DNA-modified silicon surfaces. Biosens. Bioelectron. 19(9), 1013–1019 (2004)

    Article  Google Scholar 

  11. F. Lucarelli, G. Marrazza, A.P.F. Turner, and M. Mascini, Carbon and gold electrodes as electrochemical transducers for DNA hybridisation sensors. Biosens. Bioelectron. 19(6), 515–530 (2004)

    Article  Google Scholar 

  12. L. Alfonta, A.K. Singh, and I. Willner, Liposomes labeled with biotin and horseradish peroxidase: a probe for the enhanced amplification of antigen-antibody or oligonucleotide – DNA sensing processes by the precipitation of an insoluble product on electrodes. Anal. Chem. 73(1), 91–102 (2001)

    Article  Google Scholar 

  13. F. Patolsky, A. Lichtenstein, and I. Willner, Electrochemical transduction of liposome-amplified DNA sensing. Angew. Chem. Int. Ed. 39(5), 940–943 (2000)

    Article  Google Scholar 

  14. F. Patolsky, A. Lichtenstein, and I. Willner, Electronic transduction of DNA sensing processes on surfaces: amplification of DNA detection and analysis of single-base mismatches by tagged liposomes. J. Am. Chem. Soc. 123(22), 5194–5205 (2001)

    Article  Google Scholar 

  15. O. Ouerghi, A. Senillou, N. Jaffrezic-Renault, C. Martelet, H. Ben Ouada, and S. Cosnier, Gold electrode functionalized by electropolymerization of a cyano N-substituted pyrrole: application to an impedimetric immunosensor. J. Electroanal. Chem. 501(1-2), 62–69 (2001)

    Google Scholar 

  16. Y. Xu, H. Cai, P.-G. He, and Y.-Z. Fang, Probing DNA hybridization by impedance measurement based on CdS-oligonucleotide nanoconjugates. Electroanalysis 16(1-2), 150–155 (2004)

    Article  Google Scholar 

  17. J. Wang, J.A. Profitt, M.J. Pugia, and I.I. Suni, Au nanoparticle conjugation for impedance and capacitance signal amplification in biosensors. Anal. Chem. 78(6), 1769–1773 (2006)

    Article  Google Scholar 

  18. A. Star, J.-C.P. Gabriel, K. Bradley, and G. Grüner, Electronic detection of specific protein binding using nanotube FET devices. Nano Lett. 3(4), 459–463 (2003)

    Article  ADS  Google Scholar 

  19. A. Kim, C.S. Ah, H.Y. Yu, J.-H. Yang, I.-B. Baek, C.-G. Ahn, C. W. Park, M.S. Jun, and S. Lee, Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors. Appl. Phys. Lett. 91(10), 103901 (2007)

    Google Scholar 

  20. P. Bergveld, Development, operation and application of the ion-sensitive field-effect transistor as a tool for electrophysiology. IEEE Trans. Biomed. Eng. BME-19(5), 342–351 (1972)

    Article  Google Scholar 

  21. H.H. Van den Vlekkert et al., A pH-ISFET and an integrated pH-pressure sensor with back-side contacts. Sens. Actuator 14(2), 165–176 (1988)

    Article  Google Scholar 

  22. J.C. Chou, C.N. Hsiao, The hysteresis and drift effect of hydrogenated amorphous silicon for ISFET. Sens. Actuators B 66(1-3), 181–183 (2000)

    Article  Google Scholar 

  23. O. Leistiko, The selective and temperature characteristics of ion sensitive field effect transistors. Phys. Scr. 18(6), 445–450 (1978)

    Article  ADS  Google Scholar 

  24. Y. Cui, Q. Wei, H. Park and C.M. Lieber, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533), 1289–1292 (2001)

    Article  ADS  Google Scholar 

  25. W.U. Wang, C. Chen, K.-H. Lin, Y. Fang, Y. and C.M. Lieber, Label-free detection of small-molecule-protein interactions by using nanowire nanosensors. Proc. Natl. Acad. Sci. U.S.A. 102(9), 3208–3212 (2005)

    Google Scholar 

  26. G. Zheng, F. Patolsky, Y. Cui, W.U. Wang, and C.M. Lieber, Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23(10), 1294–1301 (2005)

    Article  Google Scholar 

  27. J.-I. Hahm, and C.M. Lieber, Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 4(1), 51–54 (2004)

    Article  ADS  Google Scholar 

  28. F. Parolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang and C.M. Lieber, Electrical detection of single viruses. Proc. Natl. Acad. Sci. U.S.A. 101(39), 14017–14022 (2004)

    Article  ADS  Google Scholar 

  29. E. Stern, J.F. Klemic, D.A. Routenberg, P.N. Wyrembak, D.B.T.-Evans, A.D. Hamilton, D.A. LaVan, T.M. Fahmy and M.A. Reed, Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445(2), 519–522 (2007)

    Google Scholar 

  30. H. Im, X.-J. Haung, B. Gu and Y.-K. Choi, A dielectric-modulated field-effect transistor for biosensing. Nat. Nanotech. 2(7), 430–434 (2007)

    Article  ADS  Google Scholar 

  31. B. Gu, T.J. Park, J.-H. Ahn, X.-J. Huang, S.Y. Lee, and Y.-K. Choi, Nanogap field-effect transistor biosensors for electrical detection of avian influenza. Small 5(21), 2407–2412 (2009)

    Article  Google Scholar 

  32. M. Im, J.-H. Ahn, J.-W. Han, T.J. Park, S.Y. Lee, Y.-K. Choi, Development of a point-of-care testing platform with a nanogap-embedded separated double-gate field effect transistor array and its readout system for detection of avian influenza. IEEE Sens. J. 11(2), 351–360 (2011)

    Article  Google Scholar 

  33. R.B. Schoch, J. Han, and P. Renaud, Transport phenomena in nanofluidics. Rev. Mod. Phys. 80(3), 839–883 (2008)

    Article  ADS  Google Scholar 

  34. A. Bezryadin, and C. Dekker, Nanofabrication of electrodes with sub-5 nm spacing for transport experiments on single molecules and metal clusters. J. Vac. Sci. Technol. B 15(4), 793–799 (1997)

    Article  Google Scholar 

  35. D. Porath, A. Bezryadin, S. de Vries, and C. Dekker, Direct measurement of electrical transport through DNA molecules. Nature 403(6770), 635–638 (2000)

    Article  ADS  Google Scholar 

  36. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  37. G.D. Wilk, R.M. Wallace, and J.M. Anthony, High-\(\kappa \) dielectrics: current status and materials properties considerations. J. Appl. Phys. 89(10), 5243–5275 (2001)

    Google Scholar 

  38. C.-H. Kim, C. Jung, K.-B. Lee, H.G. Park, and Y.-K. Choi, Label-free DNA detection with a nanogap embedded complementary metal oxide semiconductor. Nanotechnology 22(13), 1032–1039 (2011)

    Article  Google Scholar 

  39. K.-W. Lee, S.-J. Choi, J.-H. Ahn, D.-I. Moon, T.J. Park, S.Y. Lee, Y.-K. Choi, An underlap field-effect transistor for electrical detection of influenza. Appl. Phys. Lett. 96(3), 033703 (2010)

    Google Scholar 

  40. B. Bhushan, (ed.), Springer Handbook of Nanotechnology (Springer, Heidelberg, 2004)

    Google Scholar 

  41. G.-J. Zhang, J.H. Chua, R.-E. Chee, A. Agarwal, and S.M. Wong, Label-free direct detection of MiRNAs with silicon nanowire biosensors. Biosens. Bioelectron. 24(8), 2504–2508 (2009)

    Article  Google Scholar 

  42. J.-H. Ahn, S.-J. Choi, J.-W. Han, T.J. Park, S.Y. Lee, and Y.-K. Choi, Double-gate nanowire field effect transistor for a biosensor. Nano Lett. 10(8), 2934–2938 (2010)

    Article  ADS  Google Scholar 

  43. M. Masahara, Y. Liu, K. Sakamoto, K. Endo, T. Mausukawa, K. Ishii, T. Sekigawa, H. Yamauchi, H. Tanoue, S. Kanemaru, H. Koike, and E. Suzuki, Demonstration, analysis, and device design considerations for independent DG MOSFETs. IEEE Trans. Electron. Devices 52(9), 2046–2053 (2005)

    Article  ADS  Google Scholar 

  44. O. Knopfmacher, A. Tarasov, W. Fu, M. Wipf, B. Niesen, M. Calame, and C. Schönenberger, Nernst limit in dual-gated Si-nanowire FET sensors. Nano Lett. 10(6), 2268–2274 (2010)

    Article  ADS  Google Scholar 

  45. M.T. Martinez, Y.–C. Tseng, N. Ormategui, I. Loinaz, R. Eritja, and J. Bokor, Label-free DNA biosensors based on functionalized carbon nanotube field effect transistors. Nano Lett. 9, 530–536 (2009)

    Google Scholar 

  46. I. Heller, J. Mannik, S.G. Lemay, and C. Dekker, Optimizing the signal-to-noise ratio for biosensing with carbon nanotube transistors. Nano Lett. 9, 377–382 (2009)

    Article  ADS  Google Scholar 

  47. N. Elfstrom, R. Juhasz, I. Sychugov, T. Engfeldt, A.E. Karlstrom, and J. Linnros, Surface charge sensitivity of silicon nanowires: size dependence. Nano Lett. 7, 2608–2612 (2007)

    Article  ADS  Google Scholar 

  48. J.S. Brugler, and P.G.A. Jespers, Charge pumping in MOS devices. IEEE Trans. Electron. Devices ED-16, 297–302 (1969)

    Article  Google Scholar 

  49. P. Dutta, and P.M. Horn, Low-frequency fluctuations in solids: 1/f noise. Rev. Mod. Phys. 53, 497–516 (1981)

    Article  ADS  Google Scholar 

  50. S. Kim, J.–H. Ahn, T.J. Park, S.Y. Lee, and Y.–K. Choi, A biomolecular detection method based on charge pumping in a nanogap embedded field-effect-transistor biosensor. Appl. Phys. Lett. 94, 243903 (2009)

    Google Scholar 

  51. S. Kim, J.–H. Ahn, T.J. Park, S.Y. Lee, and Y.–K. Choi, Charge pumping technique to analyze the effect of intrinsically retained charges and extrinsically trapped charges in biomolecules by use of a nanogap embedded biotransistor. Appl. Phys. Lett. 96, 053702 (2010)

    Google Scholar 

  52. S. Kim, J.–H. Ahn, T.J. Park, S.Y. Lee, and Y.–K. Choi, Comprehensive study of a detection mechanism and optimization strategies to improve sensitivity in a nanogap-embedded biotransistor. J. Appl. Phys. 107, 114705 (2010)

    Google Scholar 

  53. S. Kim, J.–Y. Kim, J.–H. Ahn, T.J. Park, S.Y. Lee, and Y.–K. Choi, A charge pumping technique to identify biomolecular charge polarity using a nanogap embedded biotransistor. Appl. Phys. Lett. 97, 073702 (2010)

    Google Scholar 

  54. G. Zheng, X.P.A. Gao, and C.M. Lieber, Frequency domain detection of biomolecules using silicon nanowire biosensors. Nano Lett. 10, 3179–3183 (2010)

    Article  ADS  Google Scholar 

  55. G. Groeseneken, H.E. Maes, N. Beltran, and R.F. Keersmaecker, A reliable approach to charge-pumping measurements in MOS transistors. IEEE Trans. Electron. Devices ED-31, 42–53 (1984)

    Article  Google Scholar 

  56. R.S. Muller, T.I. Kamins, M. Chan, Device Electronics for Integrated Circuits. 3rd edn. (Willey, New York, 2002), pp. 490–495

    Google Scholar 

  57. J.-Y. Kim, J.-H. Ahn, S.-J. Choi, M. Im, S. Kim, J. P. Duarte, C.-H. Kim, T. J. Park, S. Y. Lee, and Y.-K. Choi, An underlap channel-embedded field-effect fransistor for biosensor application in watery and dry environment, IEEE Trans. Nanotechnol. 11(2), 390–394 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research and Development Program under grant NRDP, 2012-0001131 for the development of biomedical function monitoring biosensors and by the Center for Integrated Smart Sensor through the National Research Foundation of Korea funded by the Ministry of Education, Science, and Technology under Grant CISS-2011-0031845.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-Kyu Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Choi, YK., Kim, CH., Ahn, JH., Kim, JY., Kim, S. (2013). Dielectric Detection Using Biochemical Assays. In: Issadore, D., Westervelt, R. (eds) Point-of-Care Diagnostics on a Chip. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29268-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29268-2_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29267-5

  • Online ISBN: 978-3-642-29268-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics