Skip to main content

Nanomedicine and Brain Tumors Treatment

  • Chapter
  • First Online:

Abstract

Malignant brain tumors represent a class of aggressive neoplasms generally associated with high rates of morbidity and mortality. Late diagnosis and the limitation of conventional therapies, which may result from inefficient delivery of the therapeutic or contrast agent to brain tumors are major reasons for this unsolved clinical problem. Recent advances in our understanding of molecular genetic and tumor biology have lead to a new class of modern antitumoral agents. Consequently, new tools have emerged to target molecules in specific signaling pathways with the objective to increase efficacy and reduce toxicity. Nanotechnology involves the design, synthesis, and characterization of materials and devices that have a functional organization in at least one dimension on the nanometer scale. The nanoparticles have emerged as a potential vector for brain delivery able to overcome the difficulties of modern strategies. Nanoparticle systems provide prolonged drug delivery directly to the tumor following direct intracerebral injection or by functionalizing the material surface with peptides and ligands allowing the drug-loaded material to be specifically target the tumor cells. In this chapter, we will first describe the principal events in glioma biology. We will then report about the applications of nanotechnologies tumor treatment. Finally, we will report various experiences of preclinical and/or clinical studies in cerebral gliomas treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abes S, Ivanova GD, Abes R, Arzumanov AA, Willians D, Owen D, Lebleu B, Gait MJ (2009) Peptide-based delivery of steric-block PNA oligonucleotides. Methods Mol Biol 480:85–99

    Google Scholar 

  • Adams ML, Lavasanifar A, Kwon GS (2003) Amphiphilic block copolymers for drug delivery. J Pharm Sci 92:1343–1355

    Google Scholar 

  • Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML (2009) Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Deliv Rev 61:457–466

    Google Scholar 

  • Aliabadi HM, Shahin M, Brocks DR, Lavasanifar A (2008) Disposition of drugs in block copolymer micelle delivery systems: from discovery to recovery. Clin Pharmacokinet 47:619–634

    Google Scholar 

  • Arbab AS, Yocum GT, Kalish H, Jordan EK, Anderson SA, Khakoo AY, Read EJ, Frank JA (2004) Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 104:1217–1223

    Google Scholar 

  • Arbab AS, Yocum GT, Rad AM, Khakoo AY, Fellowes V, Read EJ, Frank JA (2005) Labeling of cells with ferumoxides-protamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells. NMR Biomed 18:553–559

    Google Scholar 

  • Barrett T, Ravizzini G, Choyke PL, Kobayashi H (2009) Dendrimers in medical nanotechnology. IEEE Eng Med Biol Mag 28:12–22

    Google Scholar 

  • Beduneau A, Saulnier P, Benoit JP (2007) Active targeting of brain tumors using nanocarriers. Biomaterials 28:4947–4967

    Google Scholar 

  • Bell RD, Sagare AP, Friedman AE, Bedi G, Holtzman DM, Deane R, Zlokovic BV (2007) Transport pathways for clearance of human Alzheimer’s amyloid beta-peptide and apolipoproteins E and J in the mouse central nervous system. J Cereb Blood Flow Metab 27:909–918

    Google Scholar 

  • Bello L, Francolini M, Marthyn P, Zhang J, Carroll RS, Nikas DC, Strasser JF, Villani R, Cheresh DA, Black PM (2001) Alpha(v)beta3 and alpha(v)beta5 integrin expression in glioma periphery. Neurosurgery 49:380–389

    Google Scholar 

  • Bernardi RJ, Lowery AR, Thompson PA, Blaney SM, West JL (2008) Immunonanoshells for targeted photothermal ablation in medulloblastoma and glioma: an in vitro evaluation using human cell lines. J Neurooncol 86:165–172

    Google Scholar 

  • Bernardi A, Braganhol E, Jager E, Figueiro F, Edelweiss MS, Pohlmann AR, Guterres SS, Battastini AMO (2009) Indomethacin-loaded nanocapsules treatment reduces in vivo glioblastoma growth in a rat glioma model. Cancer Lett 281:53–63

    Google Scholar 

  • Bharali DJ, Khalil M, Gurbuz M, Simone TM, Mousa SA (2009) Nanoparticles and cancer therapy: a concise reviewwith emphasis on dendrimers. Int J Nanomedicine 4:1–7

    Google Scholar 

  • Boddy AV, Plummer ER, Todd R, Sludden J, Griffin M, Robson L, Cassidy J, Bisset D, Bernareggi A, Verril MW, Calvert AH (2005) A phase I and pharmacokinetic study of paclitaxel poliglumex (XYOTAX), investigating both 3-weekly and 2-weekly schedules. Clin Cancer Res 11:7834–7840

    Google Scholar 

  • Brannon-Peppas L, Blanchette JQ (2004) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 56:1649–1659

    Google Scholar 

  • Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54:631–651

    Google Scholar 

  • Burger PC (1983) Pathologic anatomy and CT correlations in the glioblastoma multiforme. Appl Neurophysiol 46:180–187

    Google Scholar 

  • Caffo M, Germanò A, Caruso G, Meli F, Galatioto S, Sciacca MP, Tomasello F (2004) An immunohistochemical study of extracellular matrix proteins laminin, fibronectin and type IV collagen in paediatric glioblastoma multiforme. Acta Neurochir (Wien) 146:1113–1118

    Google Scholar 

  • Caruso G, Caffo M, Raudino G, Alafaci C, Salpietro FM, Tomasello F (2010a) Antisense oligonucleotides as an innovative therapeutic strategy in the treatment of high-grade gliomas. Rec Pat CNS Drug Discov 5:53–69

    Google Scholar 

  • Caruso G, Raudino G, Caffo M, Alafaci C, Granata F, Lucerna S, Salpietro FM, Tomasello F (2010b) Nanotechnology platforms in diagnosis and treatments of primary brain tumors. Recent Pat Nanotechnol 4:119–122

    Google Scholar 

  • Caruso G, Caffo M, Alafaci C, Raudino G, Cafarella D, Lucerna S, Salpietro FM, Tomasello F (2011) Could nanoparticle systems have a role in the treatment of cerebral gliomas? Nanomedicine 7:744–752

    Google Scholar 

  • Castor TP (2005) Phospholipid nanosomes. Curr Drug Deliv 2:329–340

    Google Scholar 

  • Chang SM, Kuhn JG, Robins HI, Schold SC Jr, Spence AM, Berger MS, Mehta M, Pollack IF, Rankin C, Prados MD (2001) A phase II study of paclitaxel in patients with recurrent malignant glioma using different doses depending upon the concomitant use of anticonvulsants: a North American brain tumor consortium report. Cancer 91:417–422

    Google Scholar 

  • Chertok B, David AE, Huang Y, Yang VC (2007) Glioma selectivity of magnetically targeted Nanoparticles: a role of abnormal tumor hydrodynamics. J Control Release 122:315–323

    Google Scholar 

  • Chien AJ, Illi JA, Ko AH et al (2009) A phase I study of a 2-day lapatinib chemosensitization pulse preceding nanoparticle albumin-bound paclitaxlel for advanced solid malignancies. Clin Cancer Res 15:5569–5575

    Google Scholar 

  • Chintala SK, Sawaya R, Gokaslan ZL, Fuller G, Rao JS (1996) Immunohistochemical localization of extracellular matrix proteins in human glioma, both in vivo and in vitro. Canc Lett 101:107–114

    Google Scholar 

  • Cunningham CH, Arai T, Yang PC, McConnell MV, Pauly JM, Conolly SM (2005) Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magn Reson Med 53:999–1005

    Google Scholar 

  • Dabholkar RD, Sawant RM, Mongayt DA (2006) Polyethylene glycol-phosphatidylethanolamine conjugate (PEG-PE)-based mixed micelles: some properties, loading with paclitaxel, and modulation of P-glycoprotein-mediated efflux. Int J Pharm 315:148–157

    Google Scholar 

  • Dallas S, Miller DS, Bendayan R (2006) Multidrug resistance-associated proteins:expression and function in the central nervous system. Pharmacol Rev 58:140–161

    Google Scholar 

  • De Jong WH, Borm PJA (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 3:133–149

    Google Scholar 

  • Deeken JF, Löscher W (2007) The blood–brain barrier and cancer: transporters, treatment, and Trojan horses. Clin Cancer Res 13:1663–1674

    Google Scholar 

  • Desai A, Vyas T, Amiji M (2008) Cytotoxicity and apoptosis enhancement in brain tumor cells upon coadministration of paclitaxel and ceramide in nanoemulsion formulations. J Pharm Sci 97:2745–2756

    Google Scholar 

  • Dufes C, Uchegbu IF, Schatzlein AG (2005) Dendrimers in gene delivery. Adv Drug Deliv Rev 57:2177

    Google Scholar 

  • Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6:688–701

    Google Scholar 

  • Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3:16–20

    Google Scholar 

  • Fillebeen C, Descamps L, Dehouck MP (1999) Receptor-mediated transcytosis of lactoferrin through the blood–brain barrier. J Biol Chem 274:7011–7017

    Google Scholar 

  • Fortina P, Kricka LJ, Surrey S, Grodzinski P (2005) Nanobiotechnology: the promise and reality of new approaches to molecular recognition. Trends Biotechnol 23:168–173

    Google Scholar 

  • Frank JA, Miller BR, Arbab AS, Zywicke HA, Jordan EK, Lewis BK, Bryant LH Jr, Bulte JWM (2003) Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 228:480–487

    Google Scholar 

  • Gladson CL (1996) Expression of integrin alpha v beta 3 in small blood vessels of glioblastoma tumors. J Neuropathol Exp Neurol 55:1143–1149

    Google Scholar 

  • Groneberg DA, Rabe KF, Fischer A (2006) Novel concepts of neuropeptide-based therapy: vasoactive intestinal polypeptide and its receptors. Eu J Pharmacology 533:182–194

    Google Scholar 

  • Hede S, Huilgol N (2006) Nano: the new nemesis of cancer. J Cancer Res Ther 2:186–195

    Google Scholar 

  • Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994–1998

    Google Scholar 

  • Holland EC (2001) Gliomagenesis: genetic alterations and mouse models. Nat Rev Genet 2:120–129

    Google Scholar 

  • Idbaih A, Ducray F, Sierra del Rio M, Hoang-Xuan K, Delattre J (2008) Therapeutic application of noncytotoxic molecular targeted therapy in gliomas: growth factor receptors and angiogenesis inhibitors. The Oncologist 13:978–992

    Google Scholar 

  • Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT (2007) Angiogenesis in brain tumors. Nat Rev Neurosci 8:610–622

    Google Scholar 

  • Kam NW, O’Connell M, Wisdom JA, Dai H (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA 102:11600–11605

    Google Scholar 

  • Kateb B, Van Handel M, Zhang L, Bronokowski MJ, Manohara H, Badie B (2007) Internalization of MWCNTs by microglia: possible application in immunotherapy of brain tumors. NeuroImage 37:S9–S17

    Google Scholar 

  • Kattumuri V, Katti K, Bhaskaran S, Boote EJ, Casteel SW, Fent GM, Robertson DJ, Chandrasekhar M, Kannan R, Katti KV (2007) Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies. Small 3:333–341

    Google Scholar 

  • Ke WL, Shao K, Huang R, Han L, Liu Y, Li J, Kuang Y, Ye L, Lou J, Jiang C (2009) Gene delivery targeted to brain using an Angiopep-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. Biomaterials 30:6976–6985

    Google Scholar 

  • Kim K, Lee M, Park H, Kim JH, Kim S, Chung H, Choi K, Kim I, Seong BL, Kwon IC (2006) Cell-permeable and biocompatible polymeric nanoparticles for apoptosis imaging. J Am Chem Soc 128:3490–3491

    Google Scholar 

  • Kim DW, Kim SY, Kim HK, Kim SW, Shin SW, Kim JS, Park K, Lee MY, Heo DS (2007) Multicenter phase II trial of Genexol-PM, a novel Cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer. Ann Oncol 18:2009–2014

    Google Scholar 

  • Kleihues P, Ohgaki H (1999) Primary and secondary glioblastomas: from concept to clinical diagnosis. Neuro-oncology 1:44–51

    Google Scholar 

  • Kobayashi H, Brechbiel MW (2005) Nano-sized MRI contrast agents with dendrimer cores. Adv Drug Deliv Rev 57:2271

    Google Scholar 

  • Kohn EC, Liotta LA (1995) Molecular insights into cancer invasion: strategies for prevention and intervention. Cancer Res 55:1856–1862

    Google Scholar 

  • Koo OM, Rubinstein I, Onyuksel H (2005) Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine 1:193–212

    Google Scholar 

  • Koo YL, Reddy GR, Bhojani M, Schneider R, Philbert MA, Rehemtulla A, Ross BD, Kopelman R (2006) Brain cancer diagnosis and therapy with nanoplatforms. Adv Drug Deliv Rev 58:1556–1557

    Google Scholar 

  • Kukowska-Latallo JF, Candido KA, Cao Z, Nigavekar SS, Majoros IJ, Thomas TP, Balogh LP, Khan MK, Baker JR Jr (2005) Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res 65:5317–5324

    Google Scholar 

  • Laakkonen P, Zhang L, Ruoslahti E (2008) Peptide targeting of tumor lymph vessels. Ann NY Acad Sci 1131:37–43

    Google Scholar 

  • Lai P, Lou P, Peng C, Pai CL, Yen WN, Huang MY, Young TH, Shieh MJ (2007) Doxorubicin delivery by polyamidoamine dendrimer conjugation and photochemical internalization for cancer therapy. J Control Release 122:39

    Google Scholar 

  • Lee BS, Fujita M, Khazenzon NM, Wawrowsky KA, Wachsmann-Hogiu S, Farkas DL, Black KL, Ljubimova JY, Holler E (2006) Polycefin, a new prototype of a multifunctional nanoconjugate based on poly(beta-l-malic acid) for drug delivery. Bioconjug Chem 17:317–326

    Google Scholar 

  • Lesniak MS, Upadhyay U, Goodwin R, Tyler B, Brem H (2005) Local delivery of doxorubicin for the treatment of malignant brain tumors in rats. Anticancer Res 25:3825–3831

    Google Scholar 

  • Ljubimova JY, Fujita M, Khazenzon NM, Khazenzon NM, Ljubimov AV, Black KL (2006) Changes in laminin isoforms associated with brain tumor invasion and angiogenesis. Front Biosci 11:81–88

    Google Scholar 

  • Ljubimova JY, Fujita M, Khazenzon NM, Lee B, Wachsmann-Hogiu S, Farkas DL, Black KL, Holler E (2008) Nanoconjugate based on polymalic acid for tumor targeting. Chem Biol Interact 171:195–203

    Google Scholar 

  • Lu W, Sun Q, Wan J, She Z, Jiang X (2006) Cationic albumin-conjugated pegylated Nanoparticles allow gene delivery into brain tumors via intravenous administration. Cancer Res 66:11878–11886

    Google Scholar 

  • Luis DN, Ohgaki H, Wiestler OD, Cavenee WK (2007) World Health Organization classification of tumors of the central nervous system. IARC, Lyon

    Google Scholar 

  • Madhankumar AB, Slage-Webb B, Mintz A, Sheehan JM, Connor JR (2006) Interleukin-13 receptor-targeted nanovesicles are a potential therapy for glioblastoma multiforme. Mol Cancer Ther 5:3162–3169

    Google Scholar 

  • Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavenee WK, DePinho RA (2001) Malignant glioma: genetics and biology of a grave matter. Genes Dev 15(11):1311–1333

    Google Scholar 

  • Majoros IJ, Myc A, Thomas T, Mehta CB, Baker JR Jr (2006) PAMAM dendrimer-based multifunctional conjugate for cancer therapy: synthesis, characterization, and functionality. Biomacromolecules 7:572–579

    Google Scholar 

  • Maletinska L, Blakely EA, Bjornstad KA (2000) Human glioblastoma cell lines: levels of low-density lipoprotein receptor and low density lipoprotein receptorrelated protein. Cancer Res 60:2300–2303

    Google Scholar 

  • Matsumura Y (2008) Poly (amino acid) micelle nanocarriers in preclinical and clinical studies. Adv Drug Deliv Rev 60:899–914

    Google Scholar 

  • McCarthy JR, Weissleder R (2008) Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 60:1241–1251

    Google Scholar 

  • Mikkelsen T, Yan PS, Ho KL, Sameni M, Sloane BF, Rosenblum ML (1995) Immunolocalization of cathepsin B in human glioma: implications for tumor invasion and angiogenesis. J Neurosurg 83:285–290

    Google Scholar 

  • Misra A, Ganesh S, Shahiwala A, Shah SP (2003) Drug delivery to the central nervous system: a review. J Pharm Pharm Sci 6:252–273

    Google Scholar 

  • Moffat BA, Reddy GR, McConville P, Hall DE, Chenevert TL, Kopelman RR, Philbert M, Weissleder R, Rehemtulla A, Ross BD (2003) A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI. Mol Imaging 2:324–332

    Google Scholar 

  • Moghimi SM (2006) Recent developments in polymeric nanoparticle engineering and their applications in experimental and clinical oncology. Anticancer Agents Med Chem 6:553–561

    Google Scholar 

  • Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318

    Google Scholar 

  • Moore A, Marcos E, Bogdanov A, Weissleder R (2000) Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. Radiology 214:568–574

    Google Scholar 

  • Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS, Chin S, Sherry AD, Boothman DA, Gao J (2006) Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett 6:2427–2430

    Google Scholar 

  • Needham D, Anyarambhatla G, Kong G, Dewhirst MW (2000) A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model. Cancer Res 60:1997–1201

    Google Scholar 

  • Ohgaki K, Kleihues P (2007) Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170(5):1445–1453

    Google Scholar 

  • Pan W, Kastin AJ, Zankel TC, Van Kerkhof P, Terasaki T, Bu G (2004) Efficient transfer of receptor-associated protein (RAP) across the blood–brain barrier. J Cell Sci 117:5071–5078

    Google Scholar 

  • Pancrazio JJ (2008) Neural interfaces at the nanoscale. Nanomed 3:823–830

    Google Scholar 

  • Pang Z, Lu W, Gao HL, Hu K, Chen J, Zhang C, Gao X, Jiang X, Zhu C (2008) Preparation and brain delivery property of biodegradable polymersomes conjugated with OX26. J Control Release 128:120–127

    Google Scholar 

  • Pardridge WM (2002) Why is the global CNS pharmaceutical market so underpenetrated? Drug Discov Today 7:5–7

    Google Scholar 

  • Pinhassi RI, Assaraf YG, Farber S, Stark M, Ickwicz D, Drori S, Domb AJ, Livney YD (2010) Arabinogalactan-folic acid-drug conjugate for targeted delivery and target-activated release of anticancer drugs to folate receptor-overexpressing cells. Biomacromolecules 11:294–303

    Google Scholar 

  • Pison U, Welte T, Giersing M, Groneberg DA (2006) Nanomedicine for respiratory diseases. Eu J Pharmacology 533:341–350

    Google Scholar 

  • Porkka K, Laakkonen P, Hoffman JA, Bernasconi M, Ruoslathi E (2002) A fragment of the HMGN2 protein homes to the nuclei of tumor cells and tumor endothelial cells in vivo. Proc Natl Acad Sci USA 99:7444–7449

    Google Scholar 

  • Ram Z, Culver KW, Oshiro EM, Viola JJ, DeVroom HL, Otto E, Long Z, Chiang Y, McGarrity GJ, Muul LM, Katz D, Blaese RM, Oldfield EH (1997) Therapy of malignant brain tumors by intratumoral implantation of retroviral vector producing cells. Nat Med 3:1354–1361

    Google Scholar 

  • Reddy GR, Bhojani MS, McConville P, Mood J, Moffat BA, Hall DE, Kim G, Koo YL, Woolliscroft MJ, Sugai JV, Johnson TD, Philbert MA, Kopelman R (2006) Vascular targeted Nanoparticles for imaging and treatment of brain tumors. Clin Cancer Res 12:6677–6686

    Google Scholar 

  • Régina A, Demeule M, Ché C (2008) Antitumor activity of ANG 1005, a conjugate between paclitaxel and the new brain delivery vector Angiopep-2. Br J Pharmacol 155:185–197

    Google Scholar 

  • Reubi JC, Maecke HR (2008) Peptide-based probes for cancer imaging. J Nucl Med 49:1735–1738

    Google Scholar 

  • Rooprai HK, Vanmeter T, Panou C, Schnüll S, Trillo-Pazos G, Davies D, Pilkington GJ (1999) The role of integrin receptors in aspects of glioma invasion in vitro. Int J Dev Neurosci 17:613–623

    Google Scholar 

  • Rubenstein M, Mirochnik Y, Chou P, Guinan P (1996) Antisense oligonucleotide intralesional therapy for human PC-3 prostate tumors carried in athymic nude mice. J Surg Oncol 62:194–200

    Google Scholar 

  • Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnology 2:3

    Google Scholar 

  • Salvador-Morales C, Flahaut E, Sim E, Sloan J, Green MLH, Sim RB (2006) Complement activation and protein adsorption by carbon nanotubes. Mol Immunol 43:193–201

    Google Scholar 

  • Sanchez VC, Pietruska JR, Miselis NR, Hurt RH, Kane AB (2009) Biopersistence and potential adverse health impacts of fibrous nanomaterials: what have we learned from asbestos? Nanomed Nanobiotechnol 1:511–529

    Google Scholar 

  • Schneider T, Becker A, Ringe K, Reinhold A, Firsching R, Sabel BA (2008) Brain tumor therapy by combined vaccination and antisense oligonucleotide delivery with nanoparticles. J Neuroimmunol 195:21–27

    Google Scholar 

  • Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732

    Google Scholar 

  • Senger D, Cairncross JG, Forsyth PA (2003) Long-term survivors of glioblastoma: statistical aberration or important unrecognized molecular subtype? Cancer J 9:214–221

    Google Scholar 

  • Shen J, Zhan CY, Xie C, Meng Q, Gu B, Li C, Zhang Y, Lu W (2011) Poly(ethylene glycol)-blockpoly(d, l-lactide acid) micelles anchored with angiopep-2 for brain-targeting delivery. J Drug Target 19(3):197–203

    Google Scholar 

  • Sinha R, Kim GJ, Nie S, Shin DM (2006) Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Canc Ther 5:1909–1917

    Google Scholar 

  • Smith MW, Gumbleton M (2006) Endocytosis at the blood–brain barrier: from basic understanding to drug delivery strategies. J Drug Target 14:191–214

    Google Scholar 

  • Sofou S, Sgouros G (2008) Antibody-targeted liposomes in cancer therapy and imaging. Expert Opin Drug Deliv 5:189–204

    Google Scholar 

  • Stegh AH, Kim H, Bachoo RM, Forloney KL, Zhang J, Schulze H, Park K, Hannon GJ, Yuan J, Louis DN, DePinho RA, Chin L (2007) BcI2L12 inhibits postmitochondrial apoptosis signaling in glioblastoma. Genes Dev 21:98–111

    Google Scholar 

  • Steiniger SCJ, Kreuter J, Khalansky AS, Skidan IN, Bobruskin AI, Smirnova ZS, Severin SE, Uhl R, Rock M, Geiger KD, Gelperina SE (2004) Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int J Cancer 109:759–767

    Google Scholar 

  • Stupp R, Hegi ME, van den Bent MJ, Mason WP, Weller M, Mirimanoff RO, Cairncross JG (2006) Changing paradigms: an update on the multidisciplinary management of malignant glioma. Oncologist 11:165–180

    Google Scholar 

  • Stylios GK, Giannoudis PV, Wan T (2005) Applications of nanotechnologies in medical practice. Injury 36:S6–S13

    Google Scholar 

  • Sun C, Veiseh O, Gunn J, Fang C, Hansen S, Lee D, Sze R, Ellenbogen RG, Olson J, Zhang M (2008) In vivo MRI detection of gliomas by chlorotoxin-conjugated superparamagnetic nanoprobes. Small 4:372–379

    Google Scholar 

  • Sykova E, Jendelova P (2005) Magnetic resonance tracking of implanted adult and embryonic stem cells in injured brain and spinal cord. Ann NY Acad Sci 1049:146–160

    Google Scholar 

  • Talanov VS, Regino CA, Kobayashi H, Bernardo M, Choyke PL, Brechbiel MW (2006) Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging. Nano Lett 6:1459–1463

    Google Scholar 

  • Tan WB, Jiang S, Zhang Y (2007) Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials 28:1565–1571

    Google Scholar 

  • Tekade RK, Kumar PV, Jain NK (2009) Dendrimers in oncology: an expanding horizon. Chem Rev 109:49–87

    Google Scholar 

  • Tentije AJ, Verweij J, Loos WJ, Sparreboom A (2003) Pharmacological effects of formulation vehicles: implication for canner chemotherapy. Clin Pharmacokinet 42:665–685

    Google Scholar 

  • Tomalia DA, Reyna LA, Svenson S (2007) Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem Soc Trans 35:61

    Google Scholar 

  • Uhm JH, Dooley NP, Villemure J-G, Yong VW (1997) Mechanisms of glioma invasion: role of matrix metalloproteinases. Can J Neurol Sci 24:3–15

    Google Scholar 

  • Vasey PA, Kaye SB, Morrison R et al (1999) Phase I clinical and Nanoparticle Technologies for Cancer Therapy 85 pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug-polymer conjugates Cancer Research Campaign Phase I/II Committee. Clin Cancer Res 5:83–94

    Google Scholar 

  • Wang C, Huang Y, Peng C (2009) Photothermal ablation of stem-cell like glioblastoma using carbon nanotubes functionalized with anti-CD133. In: Proceedings of the ICBME 2008, vol 23, pp 888–891

    Google Scholar 

  • Wen PY, Yung WK, Lamborn KR, Dahia PL, Wang Y, Peng B, Abrey LE, Raizer J, Cloughesy TF, Fink K, Gilbert M et al (2006) Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North American Brain Tumor Consortium Study 99–08. Clin Cancer Res 12:4899–4907

    Google Scholar 

  • Wong ET, Hess KR, Gleason MJ, Jaeckle KA, Kyritsis AP, Prados MD, Levin VA, Yung WK (1999) Outcomes and prognostic factors in recurrent glioma patients enrolled onto phase II clinical trials. J Clin Oncol 17:2572–2578

    Google Scholar 

  • Wu ZM, Yuan XH, Jiang PC, Li ZQ, Wu T (2006) Antisense oligonucleodes targeting the focal adhesion kinase inhibit proliferation, induce apoptosis and cooperate with cytotoxic drugs in human glioma cells. J Neuro-Oncol 77:117–123

    Google Scholar 

  • Xin H, Chen L, Gu J, Ren X, Wei Z, Luo J, Chen Y, Jiang X, Sha X, Fang X (2010) Enhanced anti-glioblastoma efficacy by PTX-loaded PEGylated poly(−caprolactone) nanoparticles: In vitro and in vivo evaluation. Int J Pharmacol 402:238–247

    Google Scholar 

  • Xin H, Jiang X, Gu J, Sha X, Chen L, Law K, Chen Y, Wang X, Jiang Y, Fang X (2011) Angiopep-conjugated poly (ethylene glycol)-co-poly (e-caprolactone) nanoparticles as dual-targeting drug delivery system for brain glioma. Biomaterials 32:4293–4305

    Google Scholar 

  • Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegnand SJ, Holash J (2000) Vascular-specific growth factors and blood vessel formation. Nature 407:242–248

    Google Scholar 

  • Yung WK, Albright R, Olson J (2000) A phase II study of temozolamide vs. procarbazine in patients with glioblastoma multiforme at first relapse. Br J Cancer 83:588–593

    Google Scholar 

  • Zamboni WC (2008) Concept and clinical evaluation of carrier-mediated anticancer agents. Oncologist 13:248–260

    Google Scholar 

  • Zhang Z, Yang S, Zhang Y, Zeng B, Wang S, Zhu T, Roden RBS, Chen Y, Yang R (2006) Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single walled carbon nanotubes suppresses tumor growth. Clin Cancer Res 12:4933–4939

    Google Scholar 

  • Zhang W, Sprafke JK, Ma M, Tsui EY, Sydlik A, Rutledge GC, Swager TM (2009) Modular functionalization of carbon nanotubes and fullerenes. J Am Chem Soc 131:8446–8454

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo Caruso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Caruso, G., Caffo, M., Raudino, G., Tomasello, C., Alafaci, C., Tomasello, F. (2012). Nanomedicine and Brain Tumors Treatment. In: Souto, E. (eds) Patenting Nanomedicines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29265-1_6

Download citation

Publish with us

Policies and ethics