Skip to main content

Legislative Measures for In Vitro–In Vivo Correlations and Pharmacokinetic Modeling

  • Chapter
  • First Online:
Patenting Nanomedicines

Abstract

Worldwide, the regulation and governance of nanomedicine (nanopharmaceuticals and nano-enabled devices) derived from nanoscience and Nanotechnology research is regarded as one of the most discussed sector. The legislative bodies recommend comparative pharmacokinetic and mass balance studies along with platform stability testing to ensure the clinical translation of preclinical development. In this chapter, an urgent need of a code of conduct for responsible in vitro–in vivo correlations and pharmacokinetic modeling has been raised to govern responsible nanomedical innovation. The non-availability of updated and transparent scientific and statistical data is highlighted as missing pieces in nanomedicine regulation. Additionally, a detailed account of computational approaches employed for in vitro–in vivo along with the requirement of their synergy with the experimental data to provide modular solutions has been considered to comply with regulatory framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bawa R (2004) Nanotechnology patents and challenges. http://www.cafezine.com/index_article. Accessed April 2011

  • Bawa R (2008) Nanoparticle-based therapeutics in humans: a survey. Nanotechnol Law Bus 5(2):135–156

    Google Scholar 

  • Bawa R (2009a) Patenting inventions in bionanotechnology: a primer for scientists and lawyers. In: Reisner DE (ed) Bionanotechnology: global prospects. CRC Press, Boca Raton

    Google Scholar 

  • Bawa R (2009b) Nanopharmaceuticals for drug delivery—a review. Touch Briefings 6:122–127

    Google Scholar 

  • Bawa R, Melethil S, Simmons WJ, Harris D (2008) Nanopharmaceuticals: patenting issues and FDA regulatory challenges. The SciTech Lawyer 5(2):10–15

    Google Scholar 

  • Bhogal N, Combes R, Balls M (2008) Preclinical drug development planning. In: Gad SC (ed) Preclinical development handbook: toxicology. Wiley, New York

    Google Scholar 

  • Blanco MD, Alonso MJ (1997) Development and characterization of protein-loaded poly-lactide-co-glycolide nanospheres. Eur J Pharm Biophar 43:287–94

    Article  Google Scholar 

  • Bonlokke L, Hovgaard L, Kristensen HG, Knutson L, Lindahl A, Lennernas HA (1999) Comparison between direct determination of in vivo dissolution and the deconvolution technique in humans. Eur J Pharm Sci 8:19–27

    Article  Google Scholar 

  • Brightman FA, Leahy DE, Searle GE, Thomas S (2006) Application of a generic physiologically based pharmacokinetic model to the estimation of xenobiotic levels in human plasma. Drug Metab Dispos 34(1):94–101

    Article  Google Scholar 

  • Burgess P, Hutt PB, Farokhzad OC, Langer R, Minick S, Zale S (2010) On firm ground: IP protection of therapeutic nanoparticles. Nat biotechnol 28(12)

    Google Scholar 

  • Clewell HJ, Reddy MJ, Lave T, Andersen ME (2007) Physiologically based pharmacokinetic modeling. In: Grad S (ed) Preclinical development handbook. Wiley, Hoboken

    Google Scholar 

  • Corrigan OI (1997) The biopharmaceutic drug classification and drugs administered in extended release (ER) formulations. In: Young D, DeVane J, Butler J (eds) In vitro-in vivo correlations. Plenum Press, New York

    Google Scholar 

  • Department of Health and Human Services US (1997) General principles of software validation. http://www.hhs.gov/. Accessed 15 May 2011

  • Di L, Kerns EH (2003) Profiling drug-like properties in discovery research. Curr Opin Chem Biol 7:402–408

    Article  Google Scholar 

  • Dorbeck-Jung B, Chowdhury N (2011) Is the European medical products authorization regulation equipped to cope with the challenges of nanomedicines? Law Policy 33:276–303

    Article  Google Scholar 

  • Dressman JB, Amidon GL, Reppas C, Shah VP (1999) Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharm Res 15(1):11–22

    Article  Google Scholar 

  • Drewe J, Guitard P (1993) In vitro-in vivo correlation for modified-release formulations. J Pharm Sci 82(2):132–137

    Article  Google Scholar 

  • Dusinska M, Fjellsbo LM, Heimstad E, Harju M, Bartonova A, et al (2009) Development of methodology for alternative testing strategies for the assessment of the toxicological profile of nanoparticles used in medical diagnostics. NanoTEST – EC FP7 project. J Phys Conf Ser 17(1). doi:10.1088/1742-6596/170/1/012039

  • Elan Drug Technologies (2010) NanoCrystal® Technology – the insoluble solved™. www.elandrugtechnologies.com. Accessed April 2011

  • Emami J (2006) In vitro-in vivo correlation: from theory to applications. J Pharm Pharmaceut Sci 9(2):169–189

    Google Scholar 

  • Emerich DF, Thanos CG (2006) The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis. Biomol Eng 23:171–84

    Article  Google Scholar 

  • European Science Foundation: Nanomedicine, An ESF—European Medical Research Councils (EMRC) Forward Look Report (2005). http://pt.scribd.com/doc/30651088/Nano-Medicine. Accessed April 2011

  • FDA Guidance for Industry (1997) Extended release oral dosage forms: development, evaluation and application of in vitro / in vivo correlations. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070239.pdf. Accessed 12 May 2011

  • Geng Y, Discher DE (2005) Hydrolytic degradation of poly(ethylene oxide)-block-polycaprolactone worm micelles. J Am Chem Soc 127:12780–12781

    Article  Google Scholar 

  • Gillespie WR (1997) Convolution-based approaches for in vitro-in vivo correlation modeling. In: Young D, DeVane J, Butler J (eds) In vitro-in vivo correlations. Plenum Press, New York

    Google Scholar 

  • Gobburu JVS, Marroum PJ (2001) Utilisation of pharmacokinetic-pharmacodynamic modeling and simulation in regulatory decision-making. Clin Pharmacokinetics 40(12):883–892

    Article  Google Scholar 

  • Guttendorf RJ (2011) The emerging role of A.D.M.E. in optimizing drug discovery and design. http://www.netsci.org/Science/Special/feature06.html. Accessed 16 June 2011

  • Harris D, Hermann K, Bawa R, Cleveland JT, O’Neill S (2004) Strategies for resolving patent disputes over nanoparticle drug delivery systems. Nanotechnol Law Bus J 1(4). Article 1

    Google Scholar 

  • Honig P (2010) IVIVC and PK/PD modeling are important tools in quality by design approach. http://findarticles.com/p/articles/mi_hb5677/is_7_12/ai_n56765667/. Accessed 17 June

  • Hwang SS, Bayne W, Theeuwes F (1993) In vivo evaluation of controlled-release products. J Pharm Sci 82(11):1145–1150

    Article  Google Scholar 

  • Jones HM, Parrott N, Jorga K, Lave T (2006) A novel strategy for physiologically based predictions of human pharmacokinetics. Clinical Pharmacokinetics 45(5):511–542

    Article  Google Scholar 

  • Kammona O, Alexopoulos AH, Karakosta P, Kotti K, Karageorgiou V, Kiparissides C (2011) Nanocarrier aided nasal vaccination: an experimental and computational approach. Ind Eng Chem Res 50:590–601

    Article  Google Scholar 

  • Kaplita PV, Liu HH (2005) Automatable formats of higher throughput ADMET profiling for drug discovery support. J Assoc Lab Automation 10:140–148

    Article  Google Scholar 

  • Kerns EH (2001) High throughput physicochemical profiling for drug discovery. J PharmSci 90:1838–1858

    Article  Google Scholar 

  • Kortejärvi H (2008) Modeling and simulation approaches for waiving in vivo pharmacokinetic formulation studies. Dissertation, Faculty of Pharmacy of the University of Helsinki, Helsinki

    Google Scholar 

  • Kortejärvi H, Malkki J, Marvola M, Urtti A, Yliperttula M, Pajunen P (2006) Level A in vitro-in vivo correlation (IVIVC) model with Bayesian approach to formulation series. J Pharm Sci 95(7):1595–1605

    Article  Google Scholar 

  • Lave T, Parrott N, Grimm HP, Floury A, Reddy M (2007) Challenges and opportunities with modeling and simulation in drug discovery and drug development. Xenobiotica 37(10–11):1295–1310

    Article  Google Scholar 

  • Leahy DE (2004) Drug discovery information integration: virtual humans for pharmacokinetics. Drug Discov Today: Biosilico 2:78–84

    Article  Google Scholar 

  • Leeson LJ (1995) In vitro/In vivo correlations. Drug Info J 29:903–915

    Article  Google Scholar 

  • Levchenko TS, Rammohan R, Lukyanov AN, Whiteman KR, Torchilin VP (2002) Liposome clearance in mice: the effect of a separate and combined presence of surface charge and polymer coating. Int J Pharm 240:95–102

    Article  Google Scholar 

  • Li SD, Huang L (2008) Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm 5(4):496–504

    Article  Google Scholar 

  • Li M, Al-Jamal KT, Kostarelos K, Reineke J (2010) Physiologically based pharmacokinetic modeling of nanoparticles. ACS Nano 4:6303–6317

    Article  Google Scholar 

  • Lin P, Chen JW, Chang LW, Wu JP, Redding L, Chang H, Yeh TK, Yang CS, Tsai MH, Wang HJ, Kuo UC, Yang RH (2008) Computational and ultrastructural toxicology of a nanoparticle, Quantum Dot 705, in mice. Environ Sci Technol 42:6264–6270

    Article  Google Scholar 

  • Lipinski C (2002) Poor aqueous solubility: an industry wide problem in drug discovery. Am Pharm Rev 5:82–85

    Google Scholar 

  • Liu X, Chen C (2005) Strategies to optimize brain penetration in drug discovery. Curr Opin Drug Discov Dev 8:505–512

    Google Scholar 

  • Liu D, Mori A, Huang L (1992) Role of liposome size and RES blockade in controlling biodistribution and tumor uptake of GM1-containing liposomes. Biochim Biophys Acta 1104:95–101

    Article  Google Scholar 

  • Liversidge GG, Conzentino P (1995) Drug particle size reduction for decreasing gastric irritancy and enhancing absorption of naproxen in rats. Int J Pharm 125(2):309–313

    Article  Google Scholar 

  • Liversidge GG, Cundy CC (1995) Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. absolute oral bioavailability of nanocrystalline Danazol in beagle dogs. Int J Pharm 125(1):91–97

    Article  Google Scholar 

  • Liversidge EM, Sarpotdar P, Bruno J, Hajj S, Wei L, Peltier N, Rake J, Shaw JM, Pugh S, Polin L, Jones J, Corbett T, Cooper E, Liversidge GG (1996) Formulation and antitumor activity evaluation of nanocrystalline suspensions of poorly soluble anticancer drugs. Pharm Res 13(2):272–278

    Article  Google Scholar 

  • Liversidge EM, Liversidge GG, Cooper ER (2003) Nanosizing: a formulation approach for poorly water-soluble compounds. Eur J Pharm Sci 18(2):113–120

    Article  Google Scholar 

  • Loizou G, Spendiff M, Barton HA, Bessems J, Bois FY et al (2008) Development of good modeling practice for physiologically based pharmacokinetic models for use in risk assessment: The first steps. Regul Toxicol Pharmacol 50(3):400–411

    Article  Google Scholar 

  • Luepfert C, Reichel A (2005) Development and application of physiologically based pharmacokinetic-modeling tools to support drug discovery. Chemistry and Biodiversity 2(2):1462–1486

    Article  Google Scholar 

  • Mauger DT, Chinchilli VM (1997) In vitro-in vivo relationships for oral extended-release drug products. J Biopharm Statist 7(4):565–578

    Article  Google Scholar 

  • Mendell-Harary J, Dowell J, Bigora S, Piscitelli D, Butler J, Farrell C, Devane J, Young D (1997) Nonlinear in vitro-in vivo correlation. In: Young D, DeVane J, Butler J (eds) In vitro-in vivo correlations. Plenum Press, New York

    Google Scholar 

  • Mondal SK, Mondal NB, Banerjee S, Mazumder UK (2009) Determination of drug-like properties of a novel antileishmanial compound: In vitro absorption, distribution, metabolism, and excretion studies. Indian J Pharmacol 41(4):176–181

    Article  Google Scholar 

  • Mullally MV, Winn DR (2004) Patenting nanotechnology: a unique challenge to IP bar. NY Law J: TechTrends; Tuesday, July 6

    Google Scholar 

  • Muller RH, Jacobs C, Kayser O (2001) Nanosuspensions as particulate drug formulations in therapy: rationale for development and what we can expect for the future. Adv Drug Deliv Rev 47(1):3–19

    Article  Google Scholar 

  • NanoMarkets (2005) Market opportunities for nanotechnology-enabled drug delivery. http://www.nanomarkets.net/. Accessed 15 May 2011

  • Nestorov I (2007) Whole-body physiologically based pharmacokinetic models. Expert Opin Drug Metab Toxicol 3(2):235–249

    Article  Google Scholar 

  • Parrott N, Jones H, Paquereau N, Lave T (2005a) Application of full physiological models for pharmaceutical drug candidate selection and extrapolation of pharmacokinetics to man. Basic Clin Pharmacol Toxicol 96:193–199

    Article  Google Scholar 

  • Parrott N, Paquereau N, Coassolo P, Lave T (2005b) An evaluation of the utility of physiologically based models of pharmacokinetics in early drug discovery. J Pharm Sci 94(10):2327–2343

    Article  Google Scholar 

  • Patravale VB, Date AA, Kulkarni RM (2004) Nanosuspensions: a promising drug delivery strategy. J Pharm Pharmacol 56(7):827–840

    Article  Google Scholar 

  • Quoroni A, Hochman J (1996) Development of intestinal cell culture for drug transport and metabolism studies. Adv Drug Dev Rev 22(1–2):3–52

    Article  Google Scholar 

  • Rabinow BE (2004) Nanosuspensions in drug delivery. Nat Rev Drug Discov 3(9):785–796

    Article  Google Scholar 

  • Radtke M (2001) Pure drug nanoparticles for the formulation of poorly soluble drugs. New Drugs 3:62–68

    Google Scholar 

  • Rettig H (2008) IVIVC – methods and applications in MR product development. BioVista LLC. http://www.ikev.org/haber/bioav/Biowaiver%2030-color.pdf. Accessed on 23 May 2011

  • Rettig H, Mysicka J (2008) IVIVC: methods and applications in modified-release product development. Dissol Technol 15:6–8

    Google Scholar 

  • Rowland M, Balant L, Peck C (2004) Physiologically based pharmacokinetics in drug development and regula-tory science: a workshop report. AAPS PharmSci 6(1). Article 6

    Google Scholar 

  • Sanhai WR, Sakamoto JH, Canady R, Ferrari M (2008) Seven challenges for nanomedicine. Nat Nanotech 3:242–244

    Article  Google Scholar 

  • Selick HE, Beresford AP, Tarbit MH (2002) The emerging importance of predictive ADME simulation in drug discovery. Drug Discov Today 7(2):109–116

    Article  Google Scholar 

  • APV Seminars (2007) Workshop on in vitro in vivo correlation (IVIVC) and biowaivers in drug product development. Methods, regulation and application. Heidelberg, Germany

    Google Scholar 

  • Shono Y, Jantratid E, Kesisoglou K, Reppas C, Dressman JB (2010) Forecasting in vivo oral absorption and food effect of micronized and nanosized aprepitant formulations in humans. Eur J Pharm Biopharm 76:95–104

    Article  Google Scholar 

  • Sirisuth N, Eddington ND (2011) In-vitro-in-vivo correlation definitions and regulatory guidance. Int J Generic Drugs. http://www.iagim.org/pdf/ivivc-01.pdf. Accessed 17 June 2011

  • Skjevik ÅA, Teigen K, Martinez A (2009) Perspective overview of computational methods employed in early-stage drug discovery. Future Med Chem 1(1):49–63

    Article  Google Scholar 

  • Stern ST, Hall JB, Yu LL, Wood LJ, Paciotti GF, Tamarkin L, Long SE, McNeil SE (2010) Translational considerations for cancer nanomedicine. J Control Rel 146:164–174

    Article  Google Scholar 

  • Tech Elan LLC (2011) http://www.gesundtech.com/ADME-Permeabil.htm. Accessed 16 June 2011

  • Telgmann R, von Kleist M, Huisinga W (2006) Software supported modeling in pharmacokinetics. In: Berthold MR, Glen R, Fischer I (eds) Computational Life Sciences II: Second International Symposium, CompLife 2006, Cambridge, UK, September 27-29, 2006. Proceedings. Lecture Notes in Computer Science (LNCS), 4216/2006. Springer Berlin / Heidelberg pp:216-225. doi:10.1007/11875741

  • The United Stated Pharmacopeia (1995) In vitro and in vivo evaluation of dosage form. 23rd, 1824–1929

    Google Scholar 

  • Tosi G, Costantino L, Ruozi B, Forni F, Vandelli MA (2008) Polymeric nanoparticles for the drug delivery to the central nervous system. Expert Opin Drug Deliv 5:155–174

    Article  Google Scholar 

  • Tsaioun K, Bottlaender M, Mabondzo A (2009) ADDME–avoiding drug development mistakes early: central nervous system drug discovery perspective. BMC Neurology 9(Suppl 1):S1. doi:10.1186/1471-2377-9-S1-S1

    Article  Google Scholar 

  • Uppoor VRS (2001) Regulatory perspectives on in vitro (dissolution)/in vivo (bioavailability) correlations. J Control Rel 72:127–132

    Article  Google Scholar 

  • van de Waterbeemd H, Gifford E (2005) ADMET in silico modeling: towards prediction paradise? Nature Rev Drug Disc 2:192–204

    Article  Google Scholar 

  • Wang J, Collis A (2011) Maximizing the outcome of early ADMET models: strategies to win the drug-hunting battles? Expert Opin Drug Metab Toxicol 7(4):381–386

    Article  Google Scholar 

  • Wang J, Urban L (2004) The impact of early ADME profiling on drug discovery and development strategy. Drug Discov World 5:73–86

    Google Scholar 

  • Yoshikawa T, Tsutsumi Y, Nakagawa S (2006) Development of nanomedicine using intracellular DDS. Nippon Rinsho 64(2):247–52

    Google Scholar 

  • Young D, Devane JG, Butler J (1997) In: Young D, Devane JG, Butler J (eds) In vitro-in vivo correlations. Plenum press, New York

    Chapter  Google Scholar 

  • Zhang Y, Schlachetzki F, Li JY, Boado RJ, Pardridge WM (2003) Organ-specific gene expression in the rhesus monkey eye following intravenous non-viral gene transfer. Mol Vis 9:465–472

    Google Scholar 

  • Zhang JS, Liu F, Huang L (2005) Implications of pharmacokinetic behavior of lipoplex for its inflammatory toxicity. Adv Drug Delivery Rev 57:689–698

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viness Pillay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pillay, V., Choonara, Y.E., Kumar, P., Ndesendo, V.M.K., du Toit, L.C. (2012). Legislative Measures for In Vitro–In Vivo Correlations and Pharmacokinetic Modeling. In: Souto, E. (eds) Patenting Nanomedicines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29265-1_3

Download citation

Publish with us

Policies and ethics