Skip to main content

Nanomedicine in Malaria

  • Chapter
  • First Online:
Book cover Patenting Nanomedicines

Abstract

Malaria is a vector-borne disease caused by a protozoan parasite of the genus Plasmodium and transmitted by the bite of an Anopheles mosquito. Four species of malaria parasite infect humans, namely: Plasmodium vivax, Plasmodium malariae, Plasmodium ovale and Plasmodium falciparum. P. falciparum causes the majority of infections in Africa and is responsible for most severe disease, large proportion of morbidity and mortality. P. vivax and P. ovale form the resting stages in the liver (hypnozoites) that once reactivated can cause a clinical relapse many months after the initial event. Anti-malarial chemotherapy is the mainstay for treatment of malaria. However, current treatment faces number of problems and challenges. Nanotechnology-based therapies have been used to improve the biopharmaceutics and pharmacokinetics property of several antimalarial drugs. The chapter highlights the available antimalarials therapy, as well as, the potential benefits of nanotechnology platforms in malaria treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulla S, Sagara I, Borrmann S, D’Alessandro U, González R, Hame M, Ogutu B, Mårtensson A, Lyimo J, Maiga H, Sasi P, Nahum A, Bassat Q, Juma E, Otieno L, Björkman A, Beck HP, Andriano K, Cousin M, Lefèvre G, Ubben D, Premji Z (2008) Efficacy and safety of artemether/lumefantrine dispersible tablets compared with crushed commercial tablets in African infants and children with uncomplicated malaria: a randomised, single-blind, multicentre trial. Lancet 372:1819–1827

    Google Scholar 

  • Aceng JR, Byarugaba JS, Tumwine JK (2005) Rectal artemether versus intravenous quinine for the treatment of cerebral malaria in children in Uganda: randomised clinical trial. BMJ 330(7487):334

    Google Scholar 

  • Aditya NP, Patankar S, Madhusudhan B, Murthy RSR, Souto EB (2010) Arthemeter-loaded lipid nanoparticles produced by modified thin-film hydration: Pharmacokinetics, toxicological and in vivo anti-malarial activity. Eur J Pharm Sci 40:448–455

    Google Scholar 

  • Agrawal AK, Gupta CM (2000) Tuftsin-bearing liposomes in treatment of macrophage based infections. Adv Drug Del Rev 41:135–146

    Google Scholar 

  • Agrawal AK, Singhal A, Gupta CM (1987) Functional drug targeting to erythrocytes in vivo using antibody bearing liposomes as drug vehicles. Biochem Biophys Res Commun 148:357–361

    Google Scholar 

  • Agrawal P, Gupta U, Jain NK (2007) Glycoconjugated peptide dendrimers-based nanoparticulate system for the delivery of chloroquine phosphate. Biomaterials 28:3349–3359

    Google Scholar 

  • Al-Angary AA, Al-Meshal MA, Bayomi MA, Khidr SH (1996) Evaluation of liposomal formulations containing the antimalarial agent, arteether. Int J Pharm 128:163–168

    Google Scholar 

  • Alving CR, Steck EA (1983) Treatment of malaria with liposomes containing 8-aminoquinoline derivatives and glucoconjugates. United States Patent 05/891,257

    Google Scholar 

  • Ansari MT, Iqbal I, Sunderland VB (2009) Dihydroartemisinin-cyclodextrin complexation: solubility and stability. Arch Pharm Res 32:155–165

    Google Scholar 

  • Ashley E, Krudsood S, Phaiphun L, Srivilairit S, McGready R, Leowattana W, Hutagalung R, Wilairatana P, Brockman A, Looareesuwan L, Nosten F, White NJ (2004) Dose optimisation randomized controlled studies of dihydroartemisinin-piperaquine for the treatment of uncomplicated multi drug resistant falciparum malaria in Thailand. J Infect Dis 190:1773–1782

    Google Scholar 

  • Bachmann MF, Hengartner H, Zinkernagel RM (1995) T helper cell-independent neutralizing B cell response against vesicular stomatitis virus: role of antigen patterns in B cell induction? Eur J Immunol 25:3445–3451

    Google Scholar 

  • Barennes H, Verdier F, Clavier F, Pussard E (1999) Pharmacokinetics of Quinimax suppositories in children with malaria. Clin Drug Invest 17:287–291

    Google Scholar 

  • Bayomi MA, Al-Angary AA, Al-Meshal MA, Al-Dardiri MM (1998) In vivo evaluation of arteether liposomes. Int J Pharm 175:1–7

    Google Scholar 

  • Bhadra D, Bhadra S, Jain NK (2005a) PEGylated peptide-based dendritic nanoparticulate systems for delivery of artemether. J Drug Del Sci Technol 15:65–73

    Google Scholar 

  • Bhadra D, Yadav AK, Bhadra S, Jain NK (2005b) Glycodendrimeric nanoparticulate carriers of primaquine phosphate for liver targeting. Int J Pharm 295:221–233

    Google Scholar 

  • Bhadra D, Bhadra S, Jain NK (2006) PEGylated peptide-based dendritic carrier for delivery of antimalarial drug chloroquin phosphate. Pharm Res 295:623–633

    Google Scholar 

  • Bonn D (2004) Artekin: an affordable antimalarial. The Lancet Infect Dis 4(5):256

    Google Scholar 

  • Bounyasong S (2001) Randomized trial of artesunate and mefloquine in comparison with quinine sulfate to treat P. falciparum malaria in pregnant women. J Med Assoc Thai 84:1289–1299

    Google Scholar 

  • Brabin B (1991) An assessment of low birthweight risk in primiparae as an indicator of malaria control in pregnancy. Int J Epidemiol 20:276–283

    Google Scholar 

  • Brabin B, Maxwell S, Chimsuku L, Verhoeff F, van der Kaay HJ, Broadhead R, Kazembe P, Thomas A (1993) A study of the consequences of malarial infection in pregnant women and their infants. Parasitologia 35:9–11

    Google Scholar 

  • Brasseur P, Guiguemde R, Diallo S, Guiyedi V, Kombila M, Ringwald P, Olliaro P (1999) Amodiaquine remains effective for treating uncomplicated malaria in West and Central Africa. Trans R Soc Trop Med Hyg 93:645–650

    Google Scholar 

  • Brewster ME, Loftsson T (2007) Cyclodextrins as pharmaceutical solubilizers. Adv Drug Del Rev 59:645–666

    Google Scholar 

  • Brossi A, Venugopalan B, Dominguez Gerpe L, Yeh HJC, Flippen-Anderson JL, Buchs P, Luo XD, Milhous W, Peters W (1988) Arteether, a new antimalarial drug: synthesis and antimalarial properties. J Med Chem 31:645–650

    Google Scholar 

  • Bueno-Calderon JM, Fiandor-Roman JM (2009a) World Patent 2010142741

    Google Scholar 

  • Bueno-Calderon JM, Fiandor-Roman JM (2009b) World Patent 2010081904 (A1)

    Google Scholar 

  • Bungener L, Huckriede A, Wilschut J, Daemen T (2002) Delivery of protein antigens to the immune system by fusion-active virosomes: a comparison with liposomes and ISCOMs. Biosci Rep 22(2):323–338

    Google Scholar 

  • Chang SP, Case SE, Gosnell WL, Hashimoto A, Kramer KJ, Tam LQ (1996) A recombinant baculovirus 42-kilodalton C-terminal fragment of Plasmodium falciparum merozoite surface protein 1 protects Aotus monkeys against malaria. Infect Immun 64(1):253–261

    Google Scholar 

  • Charman WN, Porter CJH (1999) Halofantrine free base for the treatment of malaria and compositions. United States Patent 5,968,987

    Google Scholar 

  • Chingunpitak J, Puttipipatkhchorn S, Chavalitshewinkoon-Petmitr P, Tozuka Y, Moribe K, Yamamoto K (2008) Formation, stability and in vitro antimalarial activity of dihydroartemisinin nanosuspensions of obtained by co-grinding method. Drug Dev Ind Pharm 34:314–322

    Google Scholar 

  • Correale P, Cusi MG, Sabatino M, Michelli L, Pozzessere D, Nencini C, Valensin PE, Petrioli R, Giorgi G, Zurbriggen R, Gluck R, Francini G (2001) Tumour-associated antigen (TAA)-specific cytotoxic T cell (CTL) response in vitro and in a mouse model, induced by TAA-plasmids delivered by influenza virosomes. Eur J Cancer 37(16):2097–2103

    Google Scholar 

  • Crandall IE, Szarek WA, Vlahakis JZ, Xu Y, Vohra R, Sui J, Kisilevsky R (2007) Sulfated cyclodextrins inhibit the entry of Plasmodium into red blood cells. Implications for malarial therapy. Biochem Pharmacol 73:632–642

    Google Scholar 

  • Cusi MG, Zurbriggen R, Correale P, Valassina M, Terrosi C, Pergola L, Valensin PE, Gkück R (2002) Vaccine 20:3436–3442

    Google Scholar 

  • Date AA, Joshi MD, Patravale VB (2007) Parasitic diseases: liposomes and polymeric nanoparticles versus lipid nanoparticles. Adv Drug Del Rev 59(6):505–552

    Google Scholar 

  • Denis MB, Davis TM, Hewitt S, Incardona S, Nimol K, Fandeur T, Poravuth Y, Lim C (2003) Efficacy and safety of dihydroartemisinin-piperaquine (Artekin) in Cambodian children and adults with ncomplicated falciparum malaria. Clin Infect Dis 36(12):1626–1627

    Google Scholar 

  • Dhapte V, Pokharkar VJ (2011) Polyelectrolyte stabilized antimalarial nanosuspension using factorial design approach. Biomed Nanotech 7:139–141

    Google Scholar 

  • Dierling AM, Cui Z (2005) Targeting primaquine into liver using chylomicron emulsions for potential vivax malaria therapy. Int J Pharm 303:143–152

    Google Scholar 

  • Dorsey G, Njama D, Kamya MR, Cattamanchi A, Kyabayinze D, Staedke SG, Gasasira A, Rosenthal PJ (2002) Sulfadoxine/pyrimethamine alone or with amodiaquine or artesunate for treatment of uncomplicated malaria: a longitudinal randomized trial. Lancet 360:2031–2038

    Google Scholar 

  • Du Plessis LH, Lubbe J, Strauss T, Kotze AF (2010) Enhancement of nasal and intestinal calcitonin delivery by the novel Pheroid™ fatty acid based delivery system, and by N-trimethyl chitosan chloride. Int J Pharm 385:181–186

    Google Scholar 

  • Falade C, Makanga M, Premji Z, Ortmann CE, Stockmeyer M, dePalacios PI (2005) Efficacy and safety of artemether/lumefantrine(Coartem®) tablets (six-dose regimen) in African infants and children with acute, uncomplicated falciparum malaria. Trans R Soc Trop Med Hyg 99:459–467

    Google Scholar 

  • Fessi H, Piusieux F, Devissaguet JP, Ammoury N, Benita S (1989) Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm 55:R1–R4

    Google Scholar 

  • Föger F, Noonpakdee W, Loretz B, Joojuntr S, Salvenmoser W, Thaler M, Bernkop-Schnürch A (2006) Inhibition of malarial topoisomerase II in Plasmodium falciparum by antisense nanoparticles. Int J Pharm 319:139–146

    Google Scholar 

  • Foote SJ, Cowman AF (1994) The mode of action and the mechanism of action of antimalarial drugs. Acta Trop 56:157–171

    Google Scholar 

  • Gabriels M, Plaizier-Vercammen J (2003) Physical and chemical evaluation of liposomes, containing artesunate. J Pharm Biomed Anal 31:655–667

    Google Scholar 

  • Galloway JA, Chance RE (1994) Improving insulin therapy: achievements and challenges. Horm Metab Res 26(12):591–598

    Google Scholar 

  • Gamo FJ, Sanz LM, Vidal J, Cozar C, Alvarez E, Lavandera JL, Vanderwall DE, Green DVS, Kumar V, Hasan S, Brown JR, Peishof CE, Cardon LR, Garcia-Bustos JF (2010) Thousands of chemical starting points for antimalarial lead identification. Nature 465:305–310

    Google Scholar 

  • Gasasira AF, Dorsey G, Nzarubara B, Staedke SG, Nassali A, Rosenthal PJ, Kamya MR (2003) Comparative efficacy of aminoquinoline-antifolate combinations for the treatment of uncomplicated falciparum malaria in Kampala, Uganda. Am J Trop Med Hyg 68:127–132

    Google Scholar 

  • Gerber M, Breytenbach JC, du Plessis J (2008) Transdermal penetration of zalcitabine, lamivudine and synthesised N-acyl lamivudine esters. Int J Pharm 351:186–193

    Google Scholar 

  • Giao PT, de Vries PJ, Hung LQ, Binh TQ, Nam NV, Kager PA (2004) CV8, a new combination of dihydroartemisinin, piperaquine, trimethoprim and primaquine, compared with atovaquone–proguanil against falciparum malaria in Vietnam. Trop J Med Int Health 9:209–216

    Google Scholar 

  • Gluck R, Mischler R, Brantschen S, Just M, Althaus B, Cryz SJ (1992) Immunopotentiating reconstituted influenza virus virosome vaccine delivery system for immunization against hepatitis A. J Clin Invest 90:2491–2495

    Google Scholar 

  • Gorissen E, Ashruf G, Lamboo M, Bennebroek J, Gikunda S, Mbaruku G, Kager PA (2000) In vivo efficacy study of amodiaquine and sulfadoxine/pyrimethamine in Kibwezi, Kenya and Kigoma, Tanzania. Trop Med Int Health 5:459–463

    Google Scholar 

  • Graff CL, Pollack GM (2005) Functional evidence for p-glycoprotein at the nose-brain barrier. Pharm Res 22(1):86–93

    Google Scholar 

  • Grobler A, Kotze A, Du Plessis J (2007) The design of a skin friendly carrier for cosmetic compounds using PheroidTM technology. In: Wiechers J (ed) Delivery systems technologies. Allured Publishing Corporation, Wheaton

    Google Scholar 

  • Guiguemde WA, Shelat AA, Bouck D, Crowther GJ, Davis PH, Smithson DC, Connelly M, Clark J, Zhu F, Jiménes-Díaz MB, Martínez MS, Wilson EB, Tripathi AK, Guti J, Sharlow ER et al (2010) Chemical genetics of Plasmodium falciparum. Nature 465:311–315

    Google Scholar 

  • Gupta Y, Jain A, Jain SK (2007) Transferrin-conjugated solid lipid nanoparticles for enhanced delivery of quinine dihydrochloride to the brain. J Pharm Pharmacol 59:935–940

    Google Scholar 

  • Haas SE, Clarissa Cassini Bettoni CC, De Oliveira KS, Sílvia Stanisc¸ Uaski Guterres, Costa TD (2009) Nanoencapsulation increases quinine antimalarial efficacy against Plasmodium berghei in vivo. Int J Antimicrobial Agents 34:156–161

    Google Scholar 

  • Hartell MG, Hicks R, Bhattacharjee AK, Koser BW, Carvalho K, Van Hamont JE (2004) Nuclear magnetic resonance and molecular modeling analysis of the interaction of the antimalarial drugs artelinic acid and artesunic acid with beta-cyclodextrin. J Pharm Sci 93:2076–2089

    Google Scholar 

  • Hatz C, Soto J, Nothdurft HD, Zoller T, Weitzel T, Loutan L, Bricaire F, Gay F, Burchard GD, Andriano K, Lefèvre G, De Palacios PI, Genton B (2008) Treatment of acute uncomplicated falciparum malaria with artemether/lumefantrine in non-immune populations: a safety, efficacy and pharmacokinetic study. Am J Trop Med Hyg 78:241–247

    Google Scholar 

  • Holm R, Porter CJ, Edwards GA, Müllertz A, Kristensen HG, Charman WN (2003) Examination of oral absorption and lymphatic transport of halofantrine in a triple-cannulated canine model after administration in self-microemulsifying drug delivery systems (SMEDDS) containing structured triglycerides. Eur J Pharm Sci 20(1):91–97

    Google Scholar 

  • Huckriede A, Bungener L, ter Veer W, Holtrop M, Daemen T, Palache AM, Wilschut J (2003) Influenza virosomes: combining optimal presentation of hemagglutinin with immunopotentiating activity. Vaccine 21:925–931

    Google Scholar 

  • Hung TY, Davis TM, Ilett KF (2003) Measurement of piperaquine in plasma by liquid chromatography with ultraviolet absorbance detection. J Chromatogr B Anal Technol Biomed Life Sci 791:93–101

    Google Scholar 

  • Hung TY, Davis TM, Ilett KF, Karunajeewa H, Hewitt S, Denis MB, Lim C, Socheat D (2004) Population pharmacokinetics of piperaquine in adults and children with uncomplicated falciparum or vivax malaria. Br J Clin Pharmacol 57:253–262

    Google Scholar 

  • Hunziker IP, Grabscheid B, Zurbriggen R, Gluck R, Pichler WJ, Cerny A (2002) In vitro studies of core peptide-bearing immunopotentiating reconstituted influenza virosomes as a non-live prototype vaccine against hepatitis C virus. Int Immunol 14:615–626

    Google Scholar 

  • Joshi M, Pathak S, Sharma S, Patravale V (2008) Design and in vivo pharmacodynamic evaluation of nanostructured lipid carriers for parenteral delivery of artemether: nanoject. Int J Pharm 364:119–126

    Google Scholar 

  • Kakran M, Sahoo NG, Li L, Judeh Z (2010) Dissolution of artemisinin/polymer composite nanoparticles fabricated by evaporative precipitation of nanosuspension. J Pharm Pharmacol 62(4):413–421

    Google Scholar 

  • Kakran M, Sahoo NG, Li L, Judeh Z (2011) Dissolution enhancement of artemisinin with β-cyclodextrin. Chem Pharm Bull 59:646–652

    Google Scholar 

  • Keck CM, Müller RH (2006) Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm 62(1):3–16

    Google Scholar 

  • Khoo S, Humberstone AJ, Christopher JH, Edwards GA, Charman WN (1998) Formulation design and bioavailability assessment of lipidic self-emulsifying formulations of halofantrine. Inter J Pharm 167:155–164

    Google Scholar 

  • Khoo SM, Shackleford DM, Porter CJH, Edwards GA, Charman WN (2003) Intestinal lymphatic transport of halofantrine occurs after oral administration of a unit-dose lipid-based formulation to fasted dogs. Pharm Res 20:1460–1465

    Google Scholar 

  • Klayman DL (1985) Qinghaosu (artemisinin): an antimalarial drug from China. Science 228:1049–1055

    Google Scholar 

  • Kokwaro G, Mwai L, Nzila A (2007) Artemether/lumefantrine in the treatment of uncomplicated falciparum malaria. Exp Opin Pharmacother 8(1):75–94

    Google Scholar 

  • Kuranajeewa HA, Manning L, Mueller I, Ilett KF, Davis TM (2007) Rectal administration of artemisinin derivatives for the treatment of malaria. JAMA 297(21):2381–2390

    Google Scholar 

  • Legrand P, Mosqueira V, Loiseau P, Bories C, Barratt G (2003) Long circulating nanocapsules: interest in the treatment of severe malaria with halofantrine. Ann Pharm Fr 61:196–202

    Google Scholar 

  • Leite EA, Grabe-Guimarães A, Guimarães HN (2007) Cardiotoxicity reduction induced by halofantrine entrapped in nanocapsule devices. Life Sci 80:1327–1334

    Google Scholar 

  • Lin AJ, Ager AL, Klayman DL (1994) Antimalarial activity of Dihydroartemisinin derivatives by transdermal application. Am J Trop Med Hyg 50:777–783

    Google Scholar 

  • Longmuir KJ, Robertson RT, Haynes SM, Baratta JL, Waring AJ (2006) Effective targeting of liposomes to liver and hepatocytes in vivo by incorporation of a Plasmodium amino acid sequence. Pharm Res 23:759–769

    Google Scholar 

  • Mandawgade SD, Sharma S, Pathak S, Patravale VB (2008) Development of SMEDDS using natural lipophile: application to beta-Artemether delivery. Int J Pharm 362:179–183

    Google Scholar 

  • Matthews OA, Shipway AN, Stoddart JF (1998) Dendrimers—branching out from curiosities into new technologies. Prog Polym Sci 23(1):1–56

    Google Scholar 

  • Mayorga P, Deharo E, Puisieux F, Couarraze G (1997) Interpretation and prediction of plasma levels of primaquine following transdermal delivery in Swiss mice. Int J Pharm 155(1):99–107

    Google Scholar 

  • Mbela TKMN, Ludwig A, Landau I, Deharo E, Haemers A (1994) Preparation, characterization and in vivo activity of mefloquine submicron emulsions. Int J Pharm 110:189–196

    Google Scholar 

  • McGready R, Cho T, Cho JJ, Simpson JA, Luxemburger C, Dubowitz L, Looareesuwan S, White NJ (1998) Nosten. Trans R Soc Trop Med Hyg 92:430–433

    Google Scholar 

  • Merisko-Liversidge E, Liversidge GG, Copper ER (2003) Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharma Sci 18:113–120

    Google Scholar 

  • Mimche PN, Taramelli D, Vivas L, Malar J (2011) The plant-based immunomodulator curcumin as a potential candidate for the development of an adjunctive therapy for cerebral malaria. Malar J 10:1–10

    Google Scholar 

  • Moser C, Metcalfe IC, Viret JF (2003) Virosomal adjuvanted antigen delivery systems. Expert Rev Vaccines 2:189–196

    Google Scholar 

  • Mosqueira VCF, Legrand P, Morgat JL, Vert M, Mysiakini E, Gref R, Devissaquet JP, Barrat G (2001) Biodistribution of long-circulating PEG-grafted nanocapsules in mice: effects of PEG chain length and density. Pharm Res 18:1411–1419

    Google Scholar 

  • Mueller MS, Renard A, Boato F, Vogel D, Naegeli M, Zurbriggen R, Robinson JA, Pluschke G (2003) Induction of parasite growth inhibitory antibodies by a virosomal formulation of a peptidomimetic of loop I from domain III of Plasmodium falciparum apical membrane antigen 1. Infect Immun 71:4749–4758

    Google Scholar 

  • Mugittu K, Abdulla S, Falk N, Masanja H, Felger I (2005) Efficacy of sulfadoxine-pyrimethamine in Tanzania after two years as first-line drug for uncomplicated malaria: assessment protocol and implication for treatment policy strategies. Malaria J 4(1):55

    Google Scholar 

  • Musabayane CT, Munjeri O, Matavire TP (2003) Transdermal delivery of chloroquine by amidated pectin hydrogel matrix patch in the rat. Renal Failure 25(4):525–534

    Google Scholar 

  • Mutabingwa TK (1994) Malaria and pregnancy: epidemiology, pathophysiology and control options. Acta Trop 57:239–254

    Google Scholar 

  • Nair A, Reddy C, Jacob S (2009) Delivery of a classical antihypertensive agent through the skin by chemical enhancers and iontophoresis. Skin Res Technol 15(2):187–194

    Google Scholar 

  • Nayak AP, Tiyaboonchai W, Patankar S, Madhusudhan B, Souto EB (2010) Curcuminoids-loaded lipid nanoparticles: novel approach towards malaria treatment. Colloids Surf B Biointerfaces 81(1):263–273

    Google Scholar 

  • Newton P, Suputtamongkol Y, Teja-Isavadharm P, Pukrittayakamee S, Navaratnam V, Bates I, White N (2000) Antimalarial bioavailability and disposition of artesunate in acute falciparum malaria. Antimicrob Agents Chemother 44:972–977

    Google Scholar 

  • Nwanyanwu OC, Ziba C, Kazembe P, Chitsulo L, Willima JJ, Kumwenda N, Redd SC (1996) Efficacy of sulphadoxine/pyrimethamine for Plasmodium falciparum malaria in Malawian children under five years of age. Trop Med Int Health 1:231–235

    Google Scholar 

  • Olliaro P, Nevill C, LeBras J, Ringwald P, Mussano P, Garner P, Brasseur P (1996) Systematic review of amodiaquine treatment in uncomplicated malaria. Lancet 348:1196–1201

    Google Scholar 

  • Onyeji CO, Omoruyi SI, Oladimeji FA (2007) Dissolution properties and characterization of halofantrine-2-hydroxypropyl-beta-cyclodextrin binary systems. Pharmazie 62:858–863

    Google Scholar 

  • Patravale et al (2006) A lipidic nanoparticulate based dosage forms of antiparasitics and antiinfectives. Indian Patent No. 1353/MUM/2006

    Google Scholar 

  • Peters W (1990) The prevention of antimalarial drug resistance. Pharmacol Ther 47:499–508

    Google Scholar 

  • Phillips-Howard PA, West LJ (1990) Serious adverse drug reactions to pyrimethamine-sulphadoxine, pyrimethamine-dapsone and to amodiaquine in Britain. J R Soc Med 83:82–85

    Google Scholar 

  • Pirson P, Steiger RF, Trouet A (1980) Primaquine liposomes in the chemotherapy of experimental murine malaria. Ann Trop Med Parasitol 74:383–391

    Google Scholar 

  • Pirson P, Steiger R, Trouet A (1982) The disposition of free and liposomally encapsulated antimalarial primaquine in mice. Biochem Pharmacol 31:3501–3507

    Google Scholar 

  • Postma NS, Crommelin DJA, Eling WMC, Zuidema J (1999) Treatment with liposome-bound recombinant human tumor necrosis factor-a suppresses parasitemia and protects against Plasmodium berghei k173-induced experimental cerebral malaria in mice. J Pharm Exptl Therap 288(1):114–120

    Google Scholar 

  • Saparia B, Solanki A, Murthy RSR (2001) Sustained release implants of chloroquine phosphate for possible use in chemoprophylaxis of malaria. Indian J Exp Biol 39(9):902–905

    Google Scholar 

  • Saunders J, Davis H, Coetzee L, Botha S, Kruger A, Grobler A (1999) A novel skin penetration enhancer: evaluation by membrane diffusion and confocal microscopy. J Pharm Pharm Sci 2:99–107

    Google Scholar 

  • Schumacher R, Adamina M, Zurbriggen R, Bolli M, Padovan E, Zajac P, Heberer M, Spagnoli CG (2004) Influenza virosomes enhance class I restricted CTL induction through CD4+ T cell activation. Vaccine 22:714–723

    Google Scholar 

  • Sen A, Daly ME, Hui SW (2002) Transdermal insulin delivery using lipid enhanced electroporation. Biochim Biophys Acta 1564(1):5–8

    Google Scholar 

  • Singh KK, Vingkar S (2008) Formulation, antimalarial activity and biodistribution of oral lipid nanoemulsion of primaquine. Int J Pharm 347(1–2):136–143

    Google Scholar 

  • Singh AM, Owais M, Varshney GC (1993) Use of specific polyclonal antibodies for site specific drug targeting to malaria infected erythrocytes in vivo. Indian J Biochem Biophys 30(6):411–413

    Google Scholar 

  • Singh KK et al (2006) Novel anti-malarial compositions and process of preparation thereof. Indian Patent 1438/MUM/2006

    Google Scholar 

  • Singh KK, Rajam Y (2011) Erythrocyte targeting and improved antimalarial efficacy with surface modified lipid nanoparticles of artemether. Indian Patent No. 1856/MUM/2011

    Google Scholar 

  • Slabbert C, Plessis LH, Kotzé AF (2011) Evaluation of the physical properties and stability of two lipid drug delivery systems containing mefloquine. Int J Pharm 409:209–215

    Google Scholar 

  • Song YK, Liu F, Chu S, Liu D (1997) Characterization of cationic liposome-mediated gene transfer in vivo by intravenous administration. Hum Gene Ther 8:1585–1594

    Google Scholar 

  • Staedke SG, Kamya MR, Dorsey G, Gasasira A, Ndeezi G, Charlebois ED, Rosenthal PJ (2001) Amodiaquine, sulfadoxine/pyrimethamine, and combination therapy for treatment of uncomplicated falciparum malaria in Kampala, Uganda: a randomized trial. Lancet 358:368–374

    Google Scholar 

  • Steketee RW, Nahlen BL, Parise ME, Menendez C (2001) The burden of malaria in pregnancy in malaria endemic areas. Am J Trop Med Hyg 64:28–35

    Google Scholar 

  • Tarning J, Lindegardh N, Annerberg A, Singtoroj T, Day NP, Ashton M, White NJ (2005) Pitfalls in estimating piperaquine elimination. Antimicrob Agents Chemother 49:5127–5128

    Google Scholar 

  • Tiwari S, Goyal AK, Khatri K, Gupta PN, Mishra N, Vyas SP (2008) Gel core liposomes: an advanced carrier for improved vaccine delivery. J Microencapsulation 26(1):75–82

    Google Scholar 

  • Touitou E, Waknine JH, Godin B, Golenser J (2006) Treatment of malaria in a mouse model by intranasal drug adminstration. Int J Parasitol 6(14):1493–1498

    Google Scholar 

  • Trouet A, Pirson P, Steiger R (1981) Development of new derivatives of primaquine by association with lysosomotropic carriers. Bull World Health Organ 59:449–458

    Google Scholar 

  • Urbán P, Estelrich J, Cortés A, Fernández-Busquets X (2011) A nanovector with complete discrimination for targeted delivery to Plasmodium falciparum-infected versus non-infected red blood cells in vitro. J Control Release 151(2):202–211, doi:dx.doi.org

    Google Scholar 

  • Van Dillen J, Custers M, Wensink A, Wouters B, van Voorthuizen T, Voorn W, Khan B, Muller L, Nevill C (1999) A comparison of amodiaquine and sulfadoxine-pyrimethamine as firstline treatment of falciparum malaria in Kenya. Trans R Soc Trop Med Hyg 93:185–188

    Google Scholar 

  • VanVugt MV, Wilairatana P, Gemperli B, Gathmann I, Phaipun L, Brockman A, Luxemburger C, White NJ, Nosten F, Looareesuwan S (1999) Efficacy of six doses of artemether-lumefantrine(benflumetol) in multidrug-resistant Plasmodium falciparum malaria. Am J Trop Med Hyg 60:936–942

    Google Scholar 

  • Vyas SP, Jadon RS, Goyal AK, Mishra N, Gupta PN, Khatri K, Tyagi R (2008) pH sensitive liposomes enhances immunogenicity of 19 kDa carboxyl-terminal fragment of Plasmodium falciparum. Int J Pharm Sci Nanotech 7(4):499–520

    Google Scholar 

  • Wards SA, Bray PG, Mungthin M, Hawley SR (1995) Current views on the mechanisms of resistance to quinoline-containing drugs in Plasmodium falciparum. Ann Trop Med Parasitol 89:121–124

    Google Scholar 

  • White N (1998) Why is it that antimalarial drug treatments do not always work? Ann Trop Med Parasitol 92:449–458

    Google Scholar 

  • White N (2003) Malaria in Zumla GCA. In: Cook GC, Zumla AI (Eds), Manson’s tropical diseases, 21st edn. WB Saunders, Edinburgh

    Google Scholar 

  • WHO (2011) http://www.who.int/en/. Accessed June 2011

  • Winstanley PA, Breckenridge AM (1987) Currently important antimalarial drugs. Ann Trop Med Parasitol 81(5):619–627

    Google Scholar 

  • Wissing SA, Kayser O, Muller RH (2004) Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Del Rev 56:1257–1272

    Google Scholar 

  • Wong JW, Yuen KH (2001) Improved oral bioavailability of artemisinin through inclusion complexation with beta- and gama-cyclodextrins. Int J Pharm 227:177–185

    Google Scholar 

  • Yong CS, Sah H, Jahng Y, Chang HW, Son JK, Lee SH, Jeong TC, Rhee JD, Baek SH, Kim CK, Choi HG (2003) Physicochemical characterization of diclofenac sodium-loaded poloxamer gel as a rectal delivery system with fast absorption. Drug Dev Ind Pharm 29(5):545–553

    Google Scholar 

  • Zhang X, Liu J, Qiau H, Liu H, Ni J, Zhang W, Shi Y (2010) Formulation optimization of dihydroartemisinin nanostructured lipid carrier using response surface methodology. Powder Technology 197:120–128

    Google Scholar 

  • Zhang X, Qiao L, Jianping D, Haijun S, Chenlin N, Jingman S, Xu Y (2010b) Dihydroartemisinin loaded nanostructrured lipid carriers (DHA-NLC) evaluation of pharmacokinetics and tissue distribution after intravenous administration to rats. Die Pharmazie 65(9):670–678

    Google Scholar 

  • Zurbriggen R (2003) Immunostimulating reconstituted influenza virosomes. Vaccine 21:921–924

    Google Scholar 

  • Zurbriggen R, Gluck R (1999) Immunogenicity of IRIV versus alum-adjuvanted diphtheria and tetanus toxoid vaccines in influenza primed mice. Vaccine 17(11–12):1301–1305

    Google Scholar 

  • Zurbriggen R, Novak-Hofer I, Seelig A, Gluck R (2000) IRIV-adjuvanted hepatitis A vaccine: in vivo absorption and biophysical characterization. Prog Lipid Res 39(1):3–18

    Google Scholar 

  • Zwang J, Ashley EA, Karema C, D’Alessandro U, Smithuis F (2009) Safety and efficacy of dihydroartemisinin-piperaquine in falciparum malaria: a prospective multi-centre individual patient data analysis. PLoS One 4(7):e6358

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamalinder K. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Singh, K.K. (2012). Nanomedicine in Malaria. In: Souto, E. (eds) Patenting Nanomedicines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29265-1_14

Download citation

Publish with us

Policies and ethics