Skip to main content

Nanoscience-Based Electrochemical Sensors and Arrays for Detection of Cancer Biomarker Proteins

  • Chapter
  • First Online:

Abstract

Measurement of panels of biomarker proteins in serum, tissue or saliva holds great promise for future cancer diagnostics. Broad implementation of this approach in the clinic requires new, low cost devices for multiplexed protein detection. Advanced nanomaterials coupled with electrochemical detection have provided new opportunities for development of such devices. This chapter reviews recent research in using nanoparticle labels and multiplexed detection in protein immunosensors. It focuses in part on research in our own laboratories on ultrasensitive protein immunosensors combining nanostructured electrodes with detection particles with up to 500,000 labels that detect as little as 1 fg/mL protein in diluted serum. Our most mature multiple protein detection arrays are multiplexed microfluidic devices with 8-nanostructured sensors utilizing massively labeled magnetic particles or polymers. This approach provides reliable detection for multiple proteins at levels well below 1 pg/mL, and shows excellent correlation with referee methods. The importance of validating panels of biomarkers for reliable cancer diagnostics is also stressed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Manne, U., Srivastava, R.G., Srivastava, S.: Recent advances in biomarkers for cancer diagnosis and treatment. Drug Discov. Today 10, 965–976 (2005)

    Article  CAS  Google Scholar 

  2. Rusling, J.F., Kumar, C.V., Gutkind, J.S., et al.: Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer. Analyst 135, 2496–2511 (2010)

    Article  CAS  Google Scholar 

  3. Ludwig, J.A., Weinstein, J.N.: Biomarkers in cancer staging, prognosis and treatment selection. Nat. Rev. Cancer 5, 845–856 (2005)

    Article  CAS  Google Scholar 

  4. Kulasingam, V., Diamandis, E.P.: Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nat. Clin. Pract. Oncol. 5, 588–599 (2008)

    Article  CAS  Google Scholar 

  5. Hanash, S.M., Pitteri, S.J., Faca, V.M.: Mining the plasma proteome for cancer biomarkers. Nature 452, 571–579 (2008)

    Article  CAS  Google Scholar 

  6. Giljohan, D.A., Mirkin, C.A.: Drivers of biodiagnostic development. Nature 462, 461–464 (2009)

    Article  Google Scholar 

  7. Hanash, S.M., Baik, C.S., Kallioniemi, O.: Emerging molecular biomarkers—blood-based strategies to detect and monitor cancer. Nat. Rev. Clin. Oncol. 8, 142–150 (2011)

    Article  Google Scholar 

  8. Wang, J.: Nanomaterial-based electrochemical biosensors. Analyst 130, 421–426 (2005)

    Google Scholar 

  9. Wang, J., Katz, E., Willner, I.: Biomaterial-nanoparticle hybrid systems for sensing and electronic devices. In: Katz, E., Willner, I. (eds.) Bioelectronics: from Theory to Applications, pp. 231–264. Wiley, Weinheim (2005)

    Google Scholar 

  10. Kim, S.N., Rusling, J.F., Papadimitrakopolous, F.:Carbon nanotubes in electronic and electrochemical detection of biomolecules. Adv. Mater. 19, 3214–3228 (2007)

    Google Scholar 

  11. Patolsky, F., Zheng, G., Lieber, C.M.: Nanowire-based biosensors. Anal. Chem. 78 , 4260–4269 (2006)

    Google Scholar 

  12. Atkinson, A.J., Colburn, W.A., DeGruttola, V.G., et al.: Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 69, 89–95 (2001)

    Google Scholar 

  13. Kulasingam, V., Diamandis, E.P.: Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nat. Clin. Prac. Oncol. 5, 588–599 (2008)

    Google Scholar 

  14. Hawkridge, A.M., Muddiman, D.C.: mass spectrometry–based biomarker discovery: toward a global proteome index of individuality. Ann. Rev. Anal. Chem. 2, 265–277 (2009)

    Google Scholar 

  15. Wang, J.: Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens. Bioelectron. 21, 1887–1892 (2006)

    Google Scholar 

  16. Wagner, P.D.,Verma, M., Srivastava, S.: Challenges for biomarkers in cancer detection. Ann. N. Y. Acad. Sci. 1022, 9–16 (2004)

    Google Scholar 

  17. Li, J., Zhang, Z., Rosenzweig, J., et al.: Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clin. Chem. 48, 1296–1304 (2002)

    CAS  Google Scholar 

  18. Ward, M.A., Catto, J.W.F., Hamdy, F.C.: Prostate specific antigen: biology, biochemistry and available commercial assays. Ann. Clin. Biochem. 38, 633–651 (2001)

    Article  CAS  Google Scholar 

  19. Tothill, I.E.: Biosensors for cancer markers diagnosis. Semin. Cell Dev. Biol. 20, 55–62 (2009)

    Google Scholar 

  20. Choi, Y.-E., Kwak, J.-W., Park, J.W.: Nanotechnology for early cancer detection. Sensors 10, 428–455 (2010)

    Google Scholar 

  21. Mischak, H., Allmaier, G., Apweiler, R., et al.: Recommendations for biomarker identification and qualification in clinical proteomics. Sci. Transl. Med. 2, 46ps42 (2010)

    Google Scholar 

  22. Goodsaid, F.M., Mendrick, D.L.: Translational medicine and the value of biomarker qualification. Sci. Transl. Med 2, 47ps44 (2010)

    Google Scholar 

  23. Kingsmore, S.F.: Multiplexed protein measurement: technologies and applications of protein and antibody arrays. Nat. Rev. Drug Discov. 5, 310–320 (2006)

    Google Scholar 

  24. Rasooly, A., Jacobson, J.: Development of biosensors for cancer clinical testing. Biosens. Bioelectron. 21, 1851–1858 (2006)

    Google Scholar 

  25. Heineman, W.R., Halsall, H.B.: Strategies for electrochemical immunoassay. Anal. Chem. 75, 1321A–1331A (1985)

    Article  Google Scholar 

  26. Vijayawardhana, C.A., Halsall, H.B., Heineman, W.R.: Milestones of electrochemical immunoassay at Cincinnati. In: Chambers, J.Q., Bratjer-Toth, A. (eds.) Electroanalytical Methods for Biological Materials, pp. 195–231. Marcel Dekker, NY (2002)

    Google Scholar 

  27. Ronkainen-Matsuno, N.J., Thomas, J.H. Halsall H.B., Heineman, W.R.: Electrochemical immunoassay moving into the fast lane. Trends Anal. Chem. 21, 213–225 (2002)

    Google Scholar 

  28. Bange, A. Halsall, H.B., Heineman, W.R.: Microfluidic immunosensor systems. Biosens. Bioelectron. 20, 2488–2503 (2005)

    Google Scholar 

  29. Ronkainen-Matsuno, N.J., Halsall H.B., Heineman, W.R. Electrochemical biosensors. Chem. Soc. Rev. 39, 17471763 (2010)

    Google Scholar 

  30. Warsinke, A., Stocklein, W., Leupold, E., Micheel, E., Scheller, F.W.: Electrochemical immunosensors on the road to proteomic chips. In: Perspectives in Bioanalysis, vol. 1. Elsevier, Amsterdam (2007)

    Google Scholar 

  31. Lu, B., Smyth, M.R., O’Kennedy, R.: Immunological activities of IgG antibody on pre-coated Fc receptor surfaces. Anal. Chim. Acta 331, 97–102 (1996)

    Article  CAS  Google Scholar 

  32. Carter, R.M.M.A. Poli, M. Pesavento, D.E.T. Sibley, G.J. Lubrano, G.G.: Guilbault, immunoelectrochemical biosensors for detection of saxitoxin and brevetoxin. Immunomethods 3, 128–133 (1993)

    Google Scholar 

  33. Warsinke, A., Benkert, A., Scheller, F.W. Electrochemical immunoassays. Fresenius J. Anal. Chem. 366, 622–634 (2000)

    Google Scholar 

  34. Yakovleva, J., Emneus, J.: Electrochemical immunoassays. In: Bartlett, P.N. (ed.) Handbook of Bioelectrochemistry, pp. 377–410. Wiley, New York (2008)

    Google Scholar 

  35. Wilson, M.S.: Electrochemical immunosensors for the simultaneous detection of two tumor markers. Anal. Chem. 77, 1496–1502 (2005)

    Google Scholar 

  36. Wilson, M.S., Nie, W.: Electrochemical multianalyte immunoassays using an array-based sensor. Anal. Chem. 78, 2507–2513 (2006)

    Google Scholar 

  37. Wilson, M.S., Nie, W.: Multiplex measurement of seven tumor markers using an electrochemical protein chip. Anal. Chem. 78, 6476–6483 (2006)

    Google Scholar 

  38. Wang, J.: Nanoparticle-based electrochemical bioassays of proteins. Electroanalysis 19, 769–776 (2007)

    Google Scholar 

  39. Veetil, J.V., Ye, K (2007) Development of immunosensors using carbon nanotubes. Biotechnol. Prog. 23, 517–531 (2007)

    Google Scholar 

  40. Luo, X., Morrin, A., Killard, A.J., Smyth, M.R.: Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18, 319–326 (2006)

    Google Scholar 

  41. Zhang, H., Zhao, Q., Li, X.-F., Le, X.C.: Ultrasensitive assays for proteins. Analyst 132, 724–737 (2007)

    Google Scholar 

  42. Wang, J.: Nanomaterial-based amplified transduction of biomolecular interactions. Small 1, 1036–1043 (2005)

    Google Scholar 

  43. Rusling, J.F., Yu, X., Munge, B.S., Kim, S.N., Papadimitrakopoulos, F. In: Davis, J. (ed.) Engineering the Bioelectronic Interface, pp. 94–118. Royal Society of Chemistry, UK (2009)

    Google Scholar 

  44. Malhotra, R., Papadimitrakopoulos, F., Rusling. J. F.: Sequential layer analysis of protein immunosensors based on single wall carbon nanotube forests. Langmuir 26, 15050–15056 (2010)

    Google Scholar 

  45. Das, J., Kelley, S.O.: Protein detection using arrayed microsensor chips: tuning sensor footprint to achieve ultrasensitive readout of CA-125 in serum and whole blood. Anal. Chem. 83, 1167–1172 (2011)

    Google Scholar 

  46. Mani, V., Chikkaveeraiah, B.V., Patel, V., Gutkind, J.S., Rusling, J.F.: Ultrasensitive immunosensor for cancer biomarker proteins using gold nanoparticle film electrodes and multienzyme-particle amplification. ACSNano 3, 585–594 (2009)

    Google Scholar 

  47. Soleymani, L., Fang, Z., Sargent, E.H., Kelley, S.O.: Programming the detection limits of biosensors through controlled nanostructuring. Nat. Nanotech. 4, 844–848 (2009)

    Google Scholar 

  48. Cai, D., Ren L., Zhao H., Xu C., Zhang L., et. al.: A molecular-imprint nanosensor for ultrasensitive detection of proteins. Nat. Nanotechn. 5, 597–601 (2010)

    Google Scholar 

  49. Osakai, T., Yuguchi, Y., Gohara, E., Katano, H.: Direct label-free electrochemical detection of proteins using the polarized oil/water interface. Langmuir 26, 11530–11537 (2010)

    Google Scholar 

  50. Genc, R., Murphy, D., Fragoso, A., Ortiz, M., O’Sullivan, C. K.: Signal-enhancing thermosensitive liposomes for highly sensitive immunosensor development. Anal. Chem. 83, 563–570 (2011)

    Google Scholar 

  51. Zhao, Y.L., Stoddart, J.F.: Noncovalent functionalization of single-walled carbon nanotubes. Acc. Chem. Res. 42, 1161–1171 (2009)

    Google Scholar 

  52. Jacobs, C.B., Peairs, M.J., Venton, B.J.: Carbon nanotube based electrochemical sensors for biomolecules. Anal. Chim. Acta. 662, 105–127 (2010)

    Google Scholar 

  53. Dequaire, M., Degrand, C., Limoges, B.: An electrochemical metalloimmunoassay based on a colloidal gold label. Anal. Chem. 72, 5521 (2000)

    Google Scholar 

  54. Guo, H., He, N., Ge, S., Yang, D., Zhang, J.: MCM-41 mesoporous material modified carbon paste electrode for the determination of cardiac troponin I by anodic stripping voltammetry. Talanta 68, 61–66 (2005)

    Google Scholar 

  55. Velev, O.D., Kaler, E.W.: In situ assembly of colloidal particles into miniaturized biosensors. Langmuir 15, 3693–3698 (1999)

    Google Scholar 

  56. Liu, G., Wang, J., Kim, J., Jan, M., Collins, G.: Electrochemical coding for multiplexed immunoassays of proteins. Anal. Chem. 76, 7126–7130 (2004)

    Google Scholar 

  57. Daniels, J.S., Pourmanda, N.: label-free impedance biosensors: opportunities and challenges. Electroanalysis 19, 1239–1257 (2007)

    Google Scholar 

  58. Tkac, J., Davis, J.J.: Label-free field effect protein sensing. In: Davis, J.J. (ed.) Engineering the Bioelectronic Interface, pp. 193–224. Royal Society of Chemistry, UK (2009)

    Google Scholar 

  59. Berggren, C., Bjarnason, B., Johansson, G. An immunological Interleukine-6 capacitive biosensor using perturbation with a potentiostatic step. Biosens. Bioelectron. 13, 1061–1068 (1998)

    Google Scholar 

  60. Bart, M., Stigter, E.C.A., Stapert, H.R., de Jong, G.J., van Bennekom, W.P. On the response of a label-free interferon-γ immunosensor utilizing electrochemical impedance spectroscopy, Biosens. Bioelectron. 21, 49–59 (2005)

    Google Scholar 

  61. Wang, J., Liu, G., Jan, M.R.: Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J. Am. Chem. Soc. 126, 3010–3011 (2004)

    Google Scholar 

  62. Munge, B., Liu, G., Collins, G., Wang, J.: Multiple enzyme layers on carbon nanotubes for electrochemical detection down to 80 DNA copies. Anal. Chem. 77, 4662–4666 (2005)

    Google Scholar 

  63. Wang, J., Liu, G., Munge, B., Lin, L., Zhu, Q. Angew. Chem. Int. Ed. 43, 2158–2161 (2004)

    Google Scholar 

  64. Rusling, J. F., Sotzing, G., Papadimitrakopoulos, F.: Designing nanomaterials-enhanced electrochemical immunosensors for cancer biomarker proteins, Bioelectrochem. 76, 189–194 (2009)

    Google Scholar 

  65. Yu, X., Munge, B. Patel, V., Jensen, G., Bhirde, A., Gong, J.D., Kim, S.N., Gillespie, J. Gutkind, J.S., Papadimitrakopoulos, F., Rusling, J.F.: Carbon nanotube amplification strategies for highly sensitive immunosensing of cancer biomarkers in serum and tissue. J. Am. Chem. Soc. 128, 11199–11205 (2006)

    Google Scholar 

  66. Munge, B.S., Krause, C.E., Malhotra, R., Patel, V., Gutkind, J.S., Rusling, J.F. Electrochemical immunosensors for Interleukin-6. Comparison of carbon nanotube forest and gold nanoparticle platforms. Electrochem. Comm. 11, 1009–1012 (2009)

    Google Scholar 

  67. Malhotra, R., Patel, V., Vaqué, J.P., Gutkind, J.S., Rusling, J.F.: Ultrasensitive electrochemical immunosensor for oral cancer biomarker IL-6 using carbon nanotube forest electrodes and multilabel amplification. Anal. Chem. 82, 3118–3123 (2010)

    Google Scholar 

  68. Yu, X., Kim, S.N., Papadimitrakopoulos, F., Rusling, J.F., Protein immunosensor using single-wall carbon nanotube forests with electrochemical detection of enzyme labels. Molec. Biosys. 1, 70–78 (2005)

    Google Scholar 

  69. Jensen, G.C., Yu, X., Munge, B., Bhirde, A., Gong, J.D., Kim, S.N., Papadimitrakopoulos, F. Rusling, J.F.: Characterization of multienzyme-antibody-carbon nanotube bioconjugates for immunosensors. J. Nanosci. Nanotechnol. 9, 249–255 (2009)

    Google Scholar 

  70. Chikkaveeraiah, B.V. Bhirde, A., Malhotra, R., Patel, V., Gutkind, J.S., Rusling, J.F.: Single-wall carbon nanotube forest immunoarrays for electrochemical measurement of 4 protein biomarkers for prostate cancer. Anal. Chem. 81, 9129–9134 (2009)

    Google Scholar 

  71. Munge, B.S., Krause, C.E., Malhotra, R., Patel, V., Gutkind, J.S., Rusling, J.F.: Electrochemical immunosensors for Interleukin-6. Comparison of carbon nanotube forest and gold nanoparticle platforms. Electrochem. Comm. 11, 1009–1012 (2009)

    Google Scholar 

  72. Munge, B.S., Fisher, J., Millord, L.N., Krause, C.E., Dowd, R.S., Rusling, J.F.: Sensitive electrochemical immunosensor for matrix matalloproteinase-3 based on single-wall carbon nanotubes. Analyst 135, 1345–1350 (2010)

    Google Scholar 

  73. Munge, B.S., Coffey, A.L., Doucette, J.M., Somba, B.K., Malhotra, R., Patel, V., Gutkind, J.S., Rusling, J.F.: Nanostructured immunosensor for attomolar detection of cancer biomarker Inerleukin-8 using massively labelled superparamagnetic particles. Angew. Chem. Int. Ed. 50, 7915–7918 (2011)

    Google Scholar 

  74. Nam, J.-M., Thaxton, C.S., Mirkin, C.A.: Nanoparticle-based bio-bar codes for ultrasensitive detection of proteins. Science 301, 1884–1886 (2003)

    Google Scholar 

  75. Wang, G., Huang, H., Zhang, G., Zhang, X., Fang, B., Wang, L. Dual amplificatoin strategy for the fabrication of highly sensitive interleukin-6 amperometric immunosensor based on poly-dopamine. Langmuir 27, 1224–1231 (2011)

    Google Scholar 

  76. Du, D., Wang, L., Shao, Y., Wang, J., Engelhard, M.H., Lin, Y.: Functionalized graphene oxide as a nanocarrier in a multienzyme labeling amplification strategy for ultrasensitive electrochemical immunoassay of phosphorylated p53 (S392). Anal. Chem. 83, 746–752 (2011)

    Google Scholar 

  77. Bard, A.J. (ed.): Electrogenerated Chemiluminescence. Marcel Dekker, New York (2004)

    Google Scholar 

  78. Gorman, B.A., Francis, P.S., Barnett, N.W.: Tris(2,29-bipyridyl)ruthenium(II) chemiluminescence. Analyst 131, 616–639 (2006)

    Google Scholar 

  79. Miao, W.J.: Electrogenerated chemiluminescence and its biorelated applications. Chem. Rev. 108, 2506–2553 (2008)

    Google Scholar 

  80. Marquette, C.A., Blum, L.J.: Electro-chemiluminescent biosensing. Anal. Bioanal. Chem. 390, 155–168 (2008)

    Google Scholar 

  81. Bertoncello, P., Forster, R.J.: Nanostructured materials for electrochemiluminescence (ECL)-based detection methods: recent advances and future perspectives. Biosens. Bioelectron. 24, 3191–3200 (2009)

    Google Scholar 

  82. Forster, R.J., Bertoncello, P., Keyes, T.E.: Electrogenerated chemiluminescence. Annu. Rev. Anal. Chem. 2, 359–385 (2009)

    Google Scholar 

  83. Qi, H., Peng, Y., Gao, Q., Zhang, C.: Applications of nanomaterials in electrogenerated chemiluminescence biosensors. Sensors 9, 674–695 (2009)

    Article  CAS  Google Scholar 

  84. Hu, L., Xu, G.: Applications and trends in electrochemiluminescence. Chem. Soc. Rev. 39, 3275–3304 (2010)

    Article  CAS  Google Scholar 

  85. Wei, H. Wang, E.: Electrochemiluminescence of tris(2,2′‐bipyridyl)ruthenium and its applications in bioanalysis: a review. Luminescence 26, 77–85 (2011)

    Google Scholar 

  86. Roche Diagnostics: http://rochediagnostics.ca/lab/solutions/e2010.php

  87. Meso Scale Diagnostics: www.mesoscale.com

  88. Debad, J.B., Glezer, E.N., Leland, J.K., Sigal, G.B., Wholstadter, J. In: Bard, A.J. (ed.) Electrogenerated Chemiluminescence, pp. 359–396. Marcel Dekker, New York (2004)

    Google Scholar 

  89. Van Ingen, H.E., Chan, D.W., Hubl, W., Miyachi, H., Molina, R., Pitzel, L., Ruibal, A., Rymer, J.C., Domke, I.: Analytical and clinical evaluation of an electrochemiluminescence immunoassay for the determination of CA 125. Clin. Chem. 44, 2530–2536 (1998)

    Google Scholar 

  90. Xu, X., Jeffers, R. B., Gao, J., Logan, B.: Novel solution-phase immunoassays for molecular analysis of tumor markers. Analyst 126, 1285–1292 (2001)

    Google Scholar 

  91. Yan, G., Xing, D., Tan, S., Chen, Q.: Rapid and sensitive immunomagnetic-electrochemiluminescent detection of p53 antibodies in human serum. J. Immunol. Methods 288, 47–54 (2004)

    Google Scholar 

  92. Li, X., Wang, R., Zhang, X.: Electrochemiluminescence immunoassay at a nanoporous gold leaf electrode and using CdTe quantun dots as labels. Microchim Acta 172, 285–290 (2011)

    Google Scholar 

  93. Li, C., Lin, J., Guo, Y. and Zhang, S. A novel electrochemiluminescent reagent of cyclometalated iridium complex-based DNA biosensor and its application in cancer cell detection. Chem. Comm. 47, 4442–4444 (2011)

    Google Scholar 

  94. Jie, G., Wang, L., Zhang, S.: Magnetic electrochemiluminescent Fe3O4/CdSe–CdS nanoparticle/polyelectrolyte nanocomposite for highly efficient immunosensing of a cancer biomarker. Chem. Eur. J. 17, 641–648 (2011)

    Google Scholar 

  95. US Patent: 0096918 A1 (2004)

    Google Scholar 

  96. Kurita, R., Arai, K., Nakamoto, K., Kato, D., Niwa, O.: Development of electrogenerated chemiluminescence-based enzyme linked immunosorbent assay for sub-pM detection. Anal. Chem. 82, 1692–1697 (2011)

    Google Scholar 

  97. Xu, S., Liu, Y., Wang, T., Li, J.: Positive potential operation of a cathodic electrogenerated chemiluminescence immunosensor based on luminol and graphene for cancer biomarker detection. Anal. Chem 83, 3817–3823 (2011)

    Google Scholar 

  98. Lin, D., Wu, J., Yan, F., Deng, S., Ju, H.: Ultrasensitive immunoassay of protein biomarker based on electrochemiluminescent quenching of quantum dots by hemin bio-bar-coded nanoparticle tags. Anal. Chem. 83, 5214–5221 (2011)

    Google Scholar 

  99. Sardesai, N.P., Pan, S., Rusling, J.F.: Electrochemiluminescent immunosensor for detection of protein cancer biomarkers using carbon nanotube forests and Ru(bpy)3-doped silica nanoparticles. Chem. Comm. 33, 4968–4970 (2009)

    Google Scholar 

  100. Zu, Y., Bard, A.J.: Electrogenerated chemiluminescence. 67. Dependence of light emission of the tris(2,2′)bipyridylruthenium(II)/tripropylamine system on electrode surface hydrophobicity. Anal. Chem. 73, 3960–3964 (2001)

    Google Scholar 

  101. Sardesai, N.P., Barron, J.C., Rusling, J.F.: Carbon nanotube microwell array for sensitive electrochemiluminescent detection of cancer biomarker proteins Anal. Chem. 83 , 6698–6703 (2011)

    Google Scholar 

  102. Yan, J.L., Estevez, M.C., Smith, J.E., Wang, K.M., He, X.X., Wang, L., Tan, W. H. Dye-doped nanoparticles for bioanalysis. Nano Today 2, 44–50 (2007)

    Google Scholar 

  103. Knopp, D., Tang, D., Niessner, R.: Bioanalytical applications of biomolecule-functionalized nanometer-sized doped silica particles. Anal. Chim. Acta 647, 14–30 (2009)

    Google Scholar 

  104. Choi, Y.E., Kwak, J.W., Park, J.W.: Nanotechnology for early cancer detection. Sensors 10, 428–455 (2010)

    Google Scholar 

  105. Yang, X., Yuan, R., Chai, Y., Zhuo, Y., Mao, L., Yuan, S.: Ru(bpy)3-doped silica nanoparticles labeling for a sandwich-type electrochemiluminescence immunosensor. Biosensors and Bioelectronics 25, 1851–1855 (2010)

    Google Scholar 

  106. Qiana, J., Zhoub, Z., Caoa, X., Liu, S.: Electrochemiluminescence immunosensor for ultrasensitive detection of biomarker using Ru(bpy)3-encapsulated silica nanosphere labels. Anal. Chim. Acta 665, 32–38 (2010)

    Google Scholar 

  107. Bakalova, R., Zhelev, Z., Ohba, H., Baba, Y.: Quantum dot-based western blot technology for ultrasensitive detection of tracer proteins. J. Am. Chem. Soc. 127, 9328–9329 (2005)

    Google Scholar 

  108. Jie, G.F., Liu, P., Zhang, S.S. Highly enhanced electrochemiluminescence of novel gold/silica/CdSe-CdS nanostructures for ultrasensitive immunoassay of protein tumor marker. Chem. Comm. 46, 1323–1325 (2010)

    Google Scholar 

  109. Ding, Y., Kim Y. J., Erlebacher, J.: Nanoporous gold leaf: ancient technology/advanced material. Adv. Mater. 16, 1897–1900 (2004)

    Google Scholar 

  110. Wei, F., Liao, W., Xu, Z., Yang, Y., Wong, D.T., Ho, C.-M.: Bio/abiotic interface constructed from nanoscale dna dendrimer and conducting polymer for ultrasensitive biomolecular diagnosis. Small 5, 1784–1790 (2009)

    Google Scholar 

  111. Wei, F., Patel, P., Liao, W., Chaudhry, K., Zhang, L., Arellano-Garcia, M., Hu, S., Elashoff, D., Zhou, H., Shukla, S., Shah, F., Ho, C.-M., Wong, D.T.: Electrochemical sensor for multiplex biomarkers detection. Clin Cancer Res. 15, 4446–4452 (2009)

    Google Scholar 

  112. Chikkaveeraiah, B.V., Mani, V., Patel, V., Gutkind, J.S., Rusling, J.F.: Microfluidic electrochemical immunoarray for ultrasensitive detection of two cancer biomarker proteins in serum. Biosens. Bioelectron. 26, 4477–4483 (2011)

    Google Scholar 

  113. Jensen, G.C., Krause, C.E., Sotzing, G.A., Rusling, J.F.: Inkjet-printed gold nanoparticle electrochemical arrays on plastic. Application to immunodetection of a cancer biomarker protein. Phys. Chem. Chem. Phys. 13, 4888–4894 (2011)

    Google Scholar 

  114. Tang, C.K., Vaze, A., Rusling, J.F.: Fabrication of immunosensor microwell arrays from gold compact discs for ultrasensitive detection of cancer biomarker proteins. Lab on a Chip (2011, in press). doi:10.1039/C1LC20833K

  115. Cass, A., Davis, G., Francis, G.D., Hill, H.O.A., Aston, W.J., Higgins, I.J., Plotkin, E.V., Scott, L.D.L., Turner, A.P.F.: Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal. Chem. 56, 667–671 (1984)

    Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants ES013557 from NIEHS and EB014586 from NIBIB (JFR), by a Walton Research Fellowship to JFR from Science Foundation Ireland, and by grant P20RR016457 from NCRR/NIH (BSM). The authors thank collaborators and research students named in joint publications for their excellent contributions to the project, without which progress would not have been possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James F. Rusling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rusling, J.F., Munge, B., Sardesai, N.P., Malhotra, R., Chikkaveeraiah, B.V. (2013). Nanoscience-Based Electrochemical Sensors and Arrays for Detection of Cancer Biomarker Proteins. In: Crespilho, F. (eds) Nanobioelectrochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29250-7_1

Download citation

Publish with us

Policies and ethics