Skip to main content

Heat Stress Impact on Livestock Production

  • Chapter
  • First Online:
Environmental Stress and Amelioration in Livestock Production

Abstract

The effects of heat stress on several aspects of animal production are well documented. Heat stress results from the animal’s inability to dissipate sufficient heat to maintain homeothermy. High ambient temperature, relative humidity, and radiant energy compromise the ability of animals to dissipate heat. As a result, there is an increase in body temperature, which in turn initiates compensatory and adaptive mechanisms to re-establish homeothermy and homeostasis. Heat stress could affect animal production and well-being, especially because of increase in air temperature. Heat stress is very common and on the increase particularly in the tropics. There is considerable research evidence that shows significant decline in animal performance when subjected to heat stress. Heat stress inflicts heavy economic losses on livestock production. The effects of heat stress is evident in feed consumption, production efficiency in terms of milk yield or weight gain per unit of feed energy, growth rate, egg production, and reproductive efficiency. The physiologic mechanisms underlying the action of heat stress on the decline of production performance of domestic animals have not been fully investigated. Heat stress requires further investigation, and the elucidation of the mechanisms may facilitate adoption of comprehensive preventive and control measures to combat heat stress in domestic animals. This chapter examines heat stress and its negative impacts on livestock production. It elucidates the general negative effects of heat stress on physiologic and production parameters of domestic livestock. The mechanisms involved when animals are subjected to heat stress and impacts of heat stress on domestic animals are emphasized. An understanding of these mechanisms may result in the development of improved techniques for enhancing livestock productivity in tropical environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Ellah AM (1995) Effect of ascorbic acid supplementation on performance of laying hens during hot summer months. Assiut Vet Med J 34:83–95

    Google Scholar 

  • Abioja MO (2010) Temperature-humidity effects on egg fertility and evaluation of vitamin C and cold water on broiler growth in hot season. Ph.D Thesis University of Agriculture, Abeokuta, Nigeria, p 165

    Google Scholar 

  • Adeloye AA, Daramola JO (2004). Improving living conditions of domestic animals in Nigeria: a review. In: Amalu UC, Gottwald FT (eds) Studies of sustainable agriculture and animal science in sub-Saharan Africa, vol 1. Support Africa International, pp 99–115

    Google Scholar 

  • Agarwal A, Ikemoto I, Loughlin KR (1994) Relationship of sperm parameters with levels of reactive oxygen species in semen specimens. J Urol 152(1):107–110

    PubMed  CAS  Google Scholar 

  • Ain Baziz H, Geraert PA, Guillaumin S (1990) Effects of high temperature and dietary composition on growth, body composition and retention in broilers. In: Proceedings of 8th European poultry conference, vol 1. World’s Poultry Science Association, Barcelona, Spain, pp 626–629

    Google Scholar 

  • Akers RM, Bauman DE, Capuco AV, Goodman GT, Tucker HA (1981) Prolactin regulation of milk excretions and biochemical differentiation of mammary epithelial cells in periparturient cows. Endocrinology 109:23–30

    Article  PubMed  CAS  Google Scholar 

  • Armstrong JS, Rajasekaran M, Chamulitrat W, Gatti P, Hellstrom WJ, Sikka SC (1999) Characterization of reactive oxygen species induced effects on human spermatozoa movement and energy metabolism. Free Radical Biol Med 26(7–8):869–880

    Article  CAS  Google Scholar 

  • Attebery JT, Johnson HD (1969) Effect of environmental temperature, controlled feeding and fasting on rumen motility. J Anim Sci 29:727

    Google Scholar 

  • Ayo JO, Oladele SB, Ngam S, Fayomi A, Afolayan SB (1999) Diurnal fluctuations in rectal temperature of the Red Sokoto goat during the harmattan season. Res Vet Sci 66(1):7–9

    Article  PubMed  CAS  Google Scholar 

  • Azab ME, Abdel-Maksoud HA (1999) Changes in some hematologic and biochemical parameters during pre-partum and post-partum periods in female Baladi goats. Small Ruminant Res 34:77–85

    Article  Google Scholar 

  • Bach A, Iglesias C, Devant M (2007) Daily rumen pH of loose-housed dairy cattle as affected by feeding pattern and live yeast supplementation. Anim Feed Sci Technol 136(1–2): 146–153

    Article  CAS  Google Scholar 

  • Baile CA, Forbes   (1974) Control of feed intake and regulation of energy balance in ruminants. Physiol Rev 54:160

    Article  PubMed  CAS  Google Scholar 

  • Bakst MR, Wishart G, Brillard JP (1994) Oviductal sperm selection, transport and storage in poultry. Poult Sci Rev 5:117–143

    Google Scholar 

  • Banks S, King SA, Irvine DS, Saunders PTK (2005) Impact of a mild scrotal heat stress on DNA integrity in murine spermatozoa. Reproduction 129(4):505–514

    Article  PubMed  CAS  Google Scholar 

  • Bar NS, Radde N (2009) Long-term prediction of fish growth under varying ambient temperature using a multiscale dynamic model. BMC Syst Biol 3: 107 http://www.biomedcentral.com/1752-0509/3/107

  • Beede DK, Collier RJ (1986) Potential nutritional strategies for intensively managed cattle during thermal stress. J Anim Sci 62:543–554

    CAS  Google Scholar 

  • Berman A, Wolfenson D (1992) Environmental modifications to improve production and fertility. In: Van Horn HH, Wilcox CJ (eds) Large dairy herd management. American Dairy Science Association, Champaign, pp 126–134

    Google Scholar 

  • Bernabucci U, Bani P, Ronchi B, Lacetera N, Nardone A (1999) Influence of short and long term exposure to a hot environment on rumen passage rate and diet digestibility by Friesian heifers. J Dairy Sci 82:967–973

    Article  PubMed  CAS  Google Scholar 

  • Blackshaw JK, Blackshaw AW (1994) Heat stress in cattle and the effect of shade on production and behavior. Aust J Exp Agric 34:285–295

    Article  Google Scholar 

  • Brillard JP (2003) Practical aspects of fertility in poultry. World’s Poult Sci J 59(4):441–446

    Article  Google Scholar 

  • Burton FG, Tullett SG (1982) A comparison of the effects of eggshell porosity on the respiration and growth of domestic fowl, duck and turkey embryos. Comp Biochem Physiol 75A:167–174

    Google Scholar 

  • Burton FG, Tullett SG (1984) The effects of egg weight and shell porosity on the growth and water balance of the chicken embryo. Comp Biochem Physiol 81A:377–385

    Google Scholar 

  • Buttle HL, Cowie AT, Jones EA, Turvey A (1979) Mammary growth during pregnancy in hypophysectomized or bromocriptine-treated goats. J Endocr 80:343–351

    Article  PubMed  CAS  Google Scholar 

  • Cahaner A, Deeb N, Yunis R, Lavi Y (1998) Reduced stress tolerance in fast growing broilers. In: Proceedings of 10th European poultry conference, vol 1. Jerusalem, Israel, pp 113–117

    Google Scholar 

  • Cavestany D, El-Whisky AB, Foot RH (1985) Effect of season and high environmental temperature on fertility of Holstein cattle. J Dairy Sci 68:1471–1478

    Article  PubMed  CAS  Google Scholar 

  • Christensen VL, Davis GS, Nestor KE (2002) Environmental incubation factors influence embryonic thyroid hormones. Poult Sci 81(4):442–450

    PubMed  CAS  Google Scholar 

  • Daramola JO, Adeloye AA (2010) Changes in spermiograms, biochemical and physiologic indices following successive electroejaculation during different periods of the day in west African Dwarf bucks. ASSET. Series A, 10 (1) (in press)

    Google Scholar 

  • Daramola JO, Adeloye AA, Ife A Balogun, Yousuf MB, Olatunde AO, Abiona JA (2011) Changes in serum cortisol concentrations in west African Dwarf (WAD) bucks during electroejaculation. Niger J Anim Prod (in press)

    Google Scholar 

  • Darszon V, Labarca P, Nishigaki T, Espinosa F (1999) Ion channels in sperm physiology. Physiol Rev 79(2):481–510

    PubMed  CAS  Google Scholar 

  • Davis TA, Ackerman RA (1987) Effects of increased water loss on growth and water content of the chick embryo. J Exp Zool 76(Suppl 1):357–364

    Google Scholar 

  • Davison TF, Misson BH, Williamson RA, Rea J (1988) Effect of increased circulating corticosterone in the immature fowl on the blastogenic responses of peripheral blood lymphocytes. Dev Comp Immunol 12(1):131–144

    Article  PubMed  CAS  Google Scholar 

  • Deeming DC, Ferguson MWJ (1991) Physiologic effects of incubation temperature on embryonic development in reptiles and birds. In: Deeming DC, Ferguson MJW (eds) Egg incubation. Cambridge University Press, Cambridge, pp 147–172

    Chapter  Google Scholar 

  • Donker RA, Nieuwland MG, Van der Zijpp AJ (1990) Heat stress influences on antibody production in chicken lines selected for high and low immune responsiveness. Poult Sci 69:599–607

    Article  PubMed  CAS  Google Scholar 

  • Edens FW (1983) Effect of environmental stressors on male reproduction. Poult Sci 62(8):1676–1689

    Article  PubMed  CAS  Google Scholar 

  • Ellis WC, Matis JH, Pond KR, Lascano CE, Telford JP (1984) Dietary influences on flow rate and digestive capacity. In: Gilchrist FMC, Mackie RI (ed) Herbivore nutrition in the subtropics and tropics. The Science Press (PTY) Ltd., Craighill, South Africa, pp 269–293

    Google Scholar 

  • Engelhardt W, Von Hales JRS (1977) Partition of capillary blood flow in rumen, reticulum and omasum of sheep. Amer J Physiol 232:E53

    Google Scholar 

  • French N (1994) Effect of incubation temperature on the gross pathology and development of turkey embryos. Br Poult Sci 3(5):363–371

    Article  Google Scholar 

  • French NA (1997) Modeling incubation temperature: the effects of incubator design, embryonic development and egg size. Poult Sci 76(1):124–133

    PubMed  CAS  Google Scholar 

  • Goligorsky MS (2001) The concept of cellular “fight-or-flight” reaction to stress. Am J Physiol 280(4):F551–F561

    CAS  Google Scholar 

  • Grieve D (2003) Heat stress in commercial layers and breeders. Tech Bull Hy-Line Int, Iowa, HLST 19(1):1–3

    Google Scholar 

  • Gross WB, Siegel HS (1983) Evaluation of the heterophil/lymphocyte ratio as a measure of stress in chickens. Avian Dis 27:972–978

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara S, Kawa K (1984) Calcium and potassium currents in spermatogenic cells dissociated from rat seminiferous tubules. J Physiol 356:135–149

    PubMed  CAS  Google Scholar 

  • Heller ED, Nathan DB, Perek M (1979) Short heat stress as an immunostimulant in chicks. Avian Pathol 8:195–203

    Article  PubMed  CAS  Google Scholar 

  • Hill D (2001) Chick length uniformity profiles as a field measurement of chick quality. Avian Poult Biol Rev 12:188

    Google Scholar 

  • Holter JB, West JW, McGilliard ML, Pell AN (1996) Predicting ad libitum dry matter intake and yields of Jersey cows. J Dairy Sci 79:912–921

    Article  PubMed  CAS  Google Scholar 

  • Holter JB, West JW, McGilliard ML (1997) Predicting adlibitum dry matter intake and yield of Holstein cows. J Dairy Sci 80:2188–2199

    Article  PubMed  CAS  Google Scholar 

  • Igono MO, Steevens BJ, Shanklin MD, Johnson HD (1985) Spray cooling effects on milk production, milk and rectal temperatures of cows during a moderate temperature summer season. J Dairy Sci 68:979–985

    Article  PubMed  CAS  Google Scholar 

  • Igono MO, Johnson HD, Steevens BJ, Shanklin MD (1988) Effect of season on milk temperature, milk growth hormone, prolactin and somatic cell counts of lactating cattle. Int J Biometeorol 32:194–200

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey JS, Martin GP, Fanguy RC (2007) The incubation of ratite eggs. http://www.thepoultrysite.com/articles/812/the-incubation-of-ratite-eggs. Accessed 5 Jan 2012

  • Kamanga-Sollo E, Pampusch MS, White ME, Hathaway MR, Dayton WR (2011) Effects of heat stress on proliferation, protein turnover, and abundance of heat shock protein messenger ribonucleic acid in cultured porcine muscle satellite cells. J Anim Sci 89(11):3473–3480. doi:10.2527/jas.2011-4123

    Article  PubMed  CAS  Google Scholar 

  • Kelley KW (1983) Immunobiology of domestic animal as affected by hot and cold weather. Trans Am Soc Agric Eng 26:834–840

    Google Scholar 

  • King LM, Brillard JP, Garrett WM, Bakst MR, Donoghue AM (2002) Segregation of spermatozoa within sperm storage tubules of fowl and turkey hens. Reproduction 123(1):79–86

    Article  PubMed  CAS  Google Scholar 

  • Kouba M, Hermier D, Le Dividich J (2001) Influence of a high ambient temperature on lipid metabolism in the growing pig. J Anim Sci 79:81–87

    PubMed  CAS  Google Scholar 

  • Le Dividich J, Noblet J, Herpin P, van Milgen J, Quiniou N (1998) Thermoregulation. In: Wiseman J, Vailez MA, Chadwick JP (eds) Progress in Pig Science. Nottingham Univ. Press, UK, pp 229–263

    Google Scholar 

  • Liew PK, Zulkifli I, r-Bejo M, Omar AR, Israf DA (2003) Effects of early age feed restriction and heat conditioning on heat shock protein 70 expression, resistance to infectious bursal disease, and growth in male broiler chickens subjected to heat stress. Poult Sci 82(12):1879–1885

    PubMed  CAS  Google Scholar 

  • Lin H, Decuypere E, Buyse J (2006) Acute heat stress induces oxidative stress in broiler chickens. Comp Biochem Physiol 144(1):11–17

    Google Scholar 

  • Lippke H (1975) Digestibility and volatile fatty acids in steers and wethers at 21 and 32 C ambient temperatures. J Dairy Sci 58:1860

    Article  PubMed  CAS  Google Scholar 

  • Lourens A (2001) The importance of air velocity in incubation. World Poult 17(3):29–30

    Google Scholar 

  • Lourens A, van den Brand H, Meijerhof R, Kemp B (2005) Effect of eggshell temperature during incubation on embryo development, hatchability, and posthatch development. Poult Sci 84(6):914–920

    PubMed  CAS  Google Scholar 

  • Lourens A, van den Brand H, Heetkamp MJW, Meijerhof R, Kemp B (2007) Effects of eggshell temperature and oxygen concentration on embryo growth and metabolism during incubation. Poult Sci 86(10):2194–2199

    PubMed  CAS  Google Scholar 

  • LPHSI (Livestock, poultry heat stress indices) (1990) Agriculture engineering technology guide. Clemson University, Clemson

    Google Scholar 

  • Lu Q, Wen J, Zhang H (2007) Effect of chronic heat exposure on fat deposition and meat quality in two genetic types of chicken. Poult Sci 86:1059–1064

    PubMed  CAS  Google Scholar 

  • Mahmoud KZ, Beck MM, Scheideler SE, Forman MF, Anderson KP, Kachman SD (1996) Acute high environmental temperature and calcium-estrogen relationships in the hen. Poult Sci 75(12):1555–1562

    Article  PubMed  CAS  Google Scholar 

  • Mallonee PG, Beede DK, Collier RJ, Wilcox CJ (1985) Production and physiologic responses of dairy cows to varying dietary potassium during heat stress. J Dairy Sci 68:1479

    Article  PubMed  CAS  Google Scholar 

  • Marai IFM, Shalaby TH, Bahgat LB, Abdel-Hafez MA (1997) Fattening of lambs on concentrates mixture diet alone without roughages or with addition of natural clay under subtropical conditions of Egypt. 2. Physiologic reactions. In: Proceeding of international conference on animal production and health, Cairo, Egypt, 2–4 Sept 1997

    Google Scholar 

  • Marai IFM, Bahgat LB, Shalaby TH, Abdel-Hafez MA (2000) Fattering performance, some behavioral traits and physiologic reactions of male lambs fed concentrates mixture alone with or without nature clay under hot summer of Egypt. Ann Arid Zone 39(4):449–560

    Google Scholar 

  • Mashaly MM, Hendricks GL, Kalama MA, Gehad AE, Abbas AO, Patterson PH (2004) Effect of heat stress on production parameters and immune responses of commercial laying hens. Poult Sci 83(6):889–894

    PubMed  CAS  Google Scholar 

  • Mburu JN, Einarsson S, Lundeheim N, Rodriguez-Martinez H (1996) Distribution, number and membrane integrity of spermatozoa in the pig oviduct in relation to spontaneous ovulation. Anim Reprod Sci 45(1–2):109–121

    Article  PubMed  CAS  Google Scholar 

  • McDaniel CD, Bramwell RK, Wilson JL, Howarth B (1995) Fertility of male and female broiler breeders following exposure to elevated ambient temperatures. Poult Sci 74(6):1029–1038

    Article  PubMed  CAS  Google Scholar 

  • McDaniel CD, Bramwell RK, Howarth B Jr (1996) The male’s contribution to broiler breeder heat-induced infertility as determined by sperm-egg penetration and sperm storage within the hen’s oviduct. Poult Sci 75(12):1546–1554

    Article  PubMed  CAS  Google Scholar 

  • McGuire MA, Beede DK, DeLorenzo MA, Collier RJ, Thatcher LA, Israel CJ, Wilcox GB, Huntington CK, Reynolds RJ (1989) Effects of thermal stress and level of feed intake on portal plasma flow and net fluxes of metabolites in lactating Holstein cows. J Anim Sci 67:1050–1060

    PubMed  CAS  Google Scholar 

  • McKee SR, Sams AR (1997) The effect of seasonal heat stress on rigor development and the incidence of pale, exudative turkey meat. Poult Sci 76:1616–1620

    PubMed  CAS  Google Scholar 

  • Mogenet LY, Youbicier-Simo BJ (19980 Determination of reliable biochemical parameters of heat stress, and application to the evaluation of medications: example of erythromycin E. In: Proceedings of 10th European poultry conference, Jerusalem, Israel, pp 538–541

    Google Scholar 

  • Moraes VMB, Malheiros RD, Bruggeman V (2003) Effect of thermal conditioning during embryonic development on aspects of physiologic responses of broilers to heat stress. J Therm Biol 28(2):133–140

    Article  Google Scholar 

  • Moraes VMB, Malheiros RD, Bruggeman V, Collin A, Tona K, Van As P, Onagbesan OM, Buyse J, Decuypere E, Macari M (2004) The effect of timing of thermal conditioning during incubation on embryo physiologic parameters and its relatioship to thermotolerance in adult broiler chickens. J Therm Biol 29:55–61

    Article  Google Scholar 

  • Moreira PE, Moura AAA, Araujo AA (2001) Effects of scrotal insulation on testis size and semen criteria in santa Ines hariy sheep raised in the state of Ceara, north–east of Brazil. Rev Bras Zootec 30(6):1704–1711

    Article  Google Scholar 

  • Morrell JM, Rodriguez-Martinez H (2011) Practical applications of sperm selection techniques as a tool for improving reproductive efficiency. Vet Med Int 894767:9

    Google Scholar 

  • Nathan DB, Heller ED, Perek M (1976) The effect of short heat stress upon leucocyte count, plasma corticosterone level, plasma and leukocyte ascorbic acid content. Br Poult Sci 17:481–485

    Article  PubMed  CAS  Google Scholar 

  • North MO (1984) Commercial chicken production manual. Layer management on floors, 3rd edn. Avi publishing Company Inc. West Port, CT

    Google Scholar 

  • Obidi JA, Onyeanusi BI, Rekwot PI, Ayo JO, Dzenda T (2008) Seasonal variations in seminal characteristics of shikabrown breeder cocks. Int J Poult Sci 7(12):1219–1223

    Article  Google Scholar 

  • Oladele SB, Ogundipc S, Ayo JO, Esievo KAN (2001) Effects of season and sex on packed cell volume, hemoglobin and total proteins of indigenous pigeons in Zaria, northern Nigeria. Veterinarski Arh 71(5):277–286

    CAS  Google Scholar 

  • Oladele SB, Ogundipe S, Ayo JO, Esievo KAN (2003) Seasonal and species variations in erythrocyte osmotic fragility of indigeneous poultry species in Zaria, northern Guinea Savannah zone of Nigeria. Bull Anim Health Prod Afr 51:204–214

    Google Scholar 

  • Ortiz-de-Montellano M, Galindo-Maldonadob F, Cavazos-Arizpec EO, Aguayo-Arceoc AM, Torres-Acostac JFJ, Orihuela A (2007) Effect of electro-ejaculation on the serum cortisol response of criollo goats (Capra hircus). Small Rumin Res 69:228–231

    Article  Google Scholar 

  • Rahn H, Paganelli CV, Ar A (1974) The avian egg: air cell gas tension, metabolism and incubation time. Respir Physiol 22(3):297–309

    Article  PubMed  CAS  Google Scholar 

  • Rahn H, Ackerman RA, Paganelli CV (1977) Humidity in the avian nest and egg water loss during incubation. Physiol. Zool. 50:269–283. Altel concentrations of placental hormones during maximal placental growth in a model placental insufficiency. J. Endocrinol. 162 (3): 433-442

    Google Scholar 

  • Regnault TRH, Orbus RJ, Battaglia FC, Wilkening RB, Anthony RV (2000) Altel concentrations of placental hormones during maximal placental growth in a model placental insufficiency. J Endocrinol 162(3):433–442

    Article  Google Scholar 

  • Regnier JA, Kelley KW, Gaskins CT (1980) Acute thermal stressors and synthesis of antibodies in chickens. Poult Sci 59:985–990

    Article  PubMed  CAS  Google Scholar 

  • Rinaldo D, Le Dividich J (1991) Influence de température ambiante sur les performance de croissant du porc. Prod Anim 4:57–65

    Google Scholar 

  • Romanoff AI (1972) Assimilation of avian yolk and albumen under normal and extreme incubating temperatures. In: Pathogenesis of the avian embryo. Wiley-Interscience, New York

    Google Scholar 

  • Romanoff AI, Smith LL, Sullivan RA (1938) Biochemistry and biophysics of the developing hen’s egg. 3. Influence of temperature. Memorandum Cornell Univ Agric Exp Stat 216:1–42

    Google Scholar 

  • Sahin N, Sahin K, Küçük O (2001) Effects of vitamin E and vitamin A supplementation on performance, thyroid status and serum concentrations of some metabolites and minerals in broilers reared under heat stress (32°C). Vet Med 46(11–12):286–292

    CAS  Google Scholar 

  • Sandercock DA, Hunter RR, Nute GR, Mitchel MA, Hocking PM (2001) Acute heat stress-induced alterations in blood acid-based status and skeletal muscle membrane in broiler chickens at two ages: implications for meat quality. Poult Sci 80:418–425

    PubMed  CAS  Google Scholar 

  • Schreiber M, Wei A, Yuan A, Gaut J, Saito M, Salkoff L (1998) Slo3, a novel pH-sensitive K channel from mammalian spermatocytes. J Biol Chem 273(6):3509–3516

    Article  PubMed  CAS  Google Scholar 

  • Settar P, Yalcin S, Turkmut L, Ozkan S, Cahaner A (1999) Season by genotype interaction related to broiler growth rate and heat tolerance. Poult Sci 78:1353–1358

    PubMed  CAS  Google Scholar 

  • Shamsuddin M, Rodriguez-Martinez H (1994) A simple, non-traumatic swim-up method for the selection of spermatozoa for in vitro fertilization in the bovine. Anim Reprod Sci 36(1–2):61–75

    Article  Google Scholar 

  • Shanklin MD (1963) Temperature-humidity effects including influence of acclimation in feed and water consumption of Holstein cattle. Univ Mo Res Bull, No 846

    Google Scholar 

  • Sharma AK, Rodriguez LA, Wilcox CJ, Collier RJ, Bachman KC, Martin FG (1988) Interactions of climatic factors affecting milk yield and composition. J Dairy Sci 71:819–825

    Article  PubMed  CAS  Google Scholar 

  • Simon MS (2003) Reducing heat stress problem. World Poult 19(3):16–17

    Google Scholar 

  • Skinner JD, Louw GN (1966) Heat stress and spermatogenesis in Bos indicus and Bos taurus cattle. J Appl Physiol 21:1784–1790

    PubMed  CAS  Google Scholar 

  • Smith TW (2000) 4-H poultry manual. Mississippi State University Extension Service in Cooperation with USDA. Unit I. Publ. No. 255

    Google Scholar 

  • Surai PF (2000) Effect of selenium and vitamin E content of the maternal diet on the antioxidant system of the yolk and the developing chick. Br Poult Sci 41(2):235–243

    Article  PubMed  CAS  Google Scholar 

  • Surai PF (2002) Selenium in poultry nutrition 1. Antioxidant properties, deficiency and toxicity. World’s Poult Sci J 58(3):333–347

    Article  Google Scholar 

  • Surai PF (2010) Natural antioxidants in poultry nutrition: new developments. In: Proceedings of the 16th European symposium on poultry nutrition, pp 669–675

    Google Scholar 

  • Tambuwal FM, Agale BM, Bangana A (2002) Hematologic and biochemical values of apparently healthy red sokoto goats. In: Proceeding of 27th annual conference of Nigerian society for animal production (NSAP) FUTA, Akure, Nigeria, 17–21 Mar 2002, pp 50–53

    Google Scholar 

  • Taylor U, Rath D, Zerbe H, Schuberth HJ (2008) Interaction of intact porcine spermatozoa with epithelial cells and neutrophilic granulocytes during uterine passage. Reprod Domest Anim 43(2):166–175

    Article  PubMed  CAS  Google Scholar 

  • Taylor U, Schuberth HJ, Rath V, Michelmann HW, Sauter-Louis C, Zerbe H (2009) Influence of inseminate components on porcine leucocyte migration in vitro and in vivo after pre- and post-ovulatory insemination. Reprod Domest Anim 44(2):180–188

    Article  PubMed  CAS  Google Scholar 

  • Terlouw C (2004) Stress reactions at slaughter and meat quality in pigs: genetic background and prior experience, a brief review of recent findings. Livest Prod Sci 37:91–98

    Google Scholar 

  • Thaxton P, Sadler CR, Glick B (1968) Immune response of chickens following heat exposure or injections with ACTH. Poult Sci 47:264–266

    Article  PubMed  CAS  Google Scholar 

  • Warren WP, Martz FA, Asay KH, Hilderbrand ES, Payne CG, Vogt JR (1974) Digestibility and rate of passage by steers fed tall fescue, alfalfa and orchardgrass hay in 18 and 32 C ambient temperatures. J Anim Sci 39:93

    Google Scholar 

  • West JW (1999) Nutritional strategies for managing the heat-stressed dairy cow. J Anim Sci 77:21–35

    PubMed  CAS  Google Scholar 

  • West JW (2003) Effects of heat stress on production in dairy cattle. J Dairy Sci 86:2131–2144

    Article  PubMed  CAS  Google Scholar 

  • Wilson HR (1991) Physiologic requirements of the developing embryo: temperature and turning. In: Tullet SG (ed) Avian Incubation. Poultry science symposium, vol 22. Butterworths-Heinnemann, London, UK, pp 145–156

    Google Scholar 

  • Wolfenson D, Roth Z, Meidan R (2000) Impaired reproduction in heat-stressed cattle: basic and applied aspects. Anim Reprod Sci 60–61:535–547

    Article  PubMed  Google Scholar 

  • Yalcin S, Siegel PB (2003) Exposure to cold or heat during incubation on developmental stability of broiler embryos. Poult Sci 82(9):1388–1392

    PubMed  CAS  Google Scholar 

  • Zulkifi I, Norma MT, Israf DA, Omar AR (2000) The effect of early age feed restriction on subsequent response to high environmental temperatures in female broiler chickens. Poult Sci 79:1401–1407

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Olamitibo Daramola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Daramola, J.O., Abioja, M.O., Onagbesan, O.M. (2012). Heat Stress Impact on Livestock Production. In: Sejian, V., Naqvi, S., Ezeji, T., Lakritz, J., Lal, R. (eds) Environmental Stress and Amelioration in Livestock Production. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29205-7_3

Download citation

Publish with us

Policies and ethics