Skip to main content

Basic Principles Involved in Adaption of Livestock to Climate Change

  • Chapter
  • First Online:
Environmental Stress and Amelioration in Livestock Production

Abstract

Animal agriculture accounts for approximately 70% of all agricultural land use and accounts for approximately 40% of the world’s agriculture gross domestic product (GDP), with the livestock sector contributing to the livelihood of over one billion people. Potentially, climate change will have large negative impacts on the livestock production in many countries, especially when the animals used are not adapted to the changed environmental conditions. Determining animal responses to climate change is a challenge. The impacts may be direct, e.g. effects of heat load on animals or indirect, e.g. prolonged droughts. There is a need to select animals (and species) that are suited to the current climatic conditions, as well as the predicted future conditions. This chapter will discuss the effect of changing climate on animal performance, animal response to environmental stressors and the processes of adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alhidary IA, Shini S, Al Jassim RAM, Gaughan JB (2012) Physiological responses of Australian Merino wethers exposed to high heat load. J Anim Sci 90:212–220

    Article  PubMed  CAS  Google Scholar 

  • Angilletta MJ (2009) Thermal adaptation—a theoretical and empirical synthesis. Oxford University Press Inc, New York

    Google Scholar 

  • Beatty DT, Barnes A, Taylor E, Pethick D, McCarthy M, Maloney SK (2006) Physiological responses of Bos taurus and Bos indicus cattle to prolonged, continuous heat and humidity. J Anim Sci 84:972–985

    PubMed  CAS  Google Scholar 

  • Beckham JT, Mackanos MA, Crooke C, Takahashi T, O’Connell-Rodwell C, Contag CH, Jansen ED (2004) Assessment of cellular response to thermal laser injury through bioluminescence imaging of heat shock protein 70. Photochem Photobiol 79:76–85

    PubMed  CAS  Google Scholar 

  • Bohmanova J, Misztal I, Cole JB (2007) Temperature-humidity indices as indicators of milk production losses due to heat stress. J Dairy Sci 90:1947–1956

    Article  PubMed  CAS  Google Scholar 

  • Bowler K (2005) Acclimation, heat shock and hardening. J Therm Biol 30:125–130

    Article  Google Scholar 

  • De Alba J (1987) Special cattle groups in the tropics. In: Johnson HD (ed) Bioclimatology and the adaptation of livestock. Elsevier, Amsterdam

    Google Scholar 

  • Devendra C (1987) Goats. In: Johnson HD (ed) Bioclimatology and the adaptation of livestock. Elsevier, Amsterdam

    Google Scholar 

  • Folk GE (1974) Textbook of environmental physiology. Lea & Febiger, Philadelphia

    Google Scholar 

  • Gaughan JB, Bonner SL (2011) Heat shock protein 70 expression as an indicator of chronic stress in cattle. Proceedings of the 5th international congress on stress response in biology and medicine, Quebec City, 21–25 August 2011, p 188

    Google Scholar 

  • Gaughan JB, Bonner S, Loxton I, Mader TL, Lisle A, Lawerence R (2010a) Effect of shade on body temperature and performance of feedlot steers. J Anim Sci 88:4056–4067

    Article  PubMed  CAS  Google Scholar 

  • Gaughan J, Lacetera N, Valtorta SE, Khalifa HH, Hahn L, Mader T (2009) Response of domestic animals to climate change. In: Ebi KL, Burton I, McGregor GR (eds) Biometeorology for adaptation to climate variability and change. Springer, Germany

    Google Scholar 

  • Gaughan JB, Lees JC (2010) Categorising heat load on dairy cows. Proc Aust Soc Anim Prod 28:105

    Google Scholar 

  • Gaughan JB, Mader TL, Holt SM, Sullivan ML, Hahn GL (2010b) Assessing heat tolerance of 17 beef cattle genotypes. Int J Biometeorol 54:629–635

    Article  PubMed  Google Scholar 

  • Glossary of Terms for Thermal Physiology (2001) IUPS thermal commission. Japan J Physiol 51:245–280

    Google Scholar 

  • Hafez ESE (1968a) Principles of animal adaptation. In: Hafez ESE (ed) Adaptation of domestic animals. Lea & Febiger, Philadelphia

    Google Scholar 

  • Hafez ESE (1968b) Behavioral adaptation. In: Hafez ESE (ed) Adaptation of domestic animals. Lea & Febiger, Philadelphia

    Google Scholar 

  • Hamadeh SK, Rawda N, Jaber JS, Habre A, Abi Said M, Barbour EK (2006) Physiological responses to water restriction in dry and lactating Awassi ewes. Livest Sci 101:101–109

    Article  Google Scholar 

  • Hansen PJ (2004) Physiological and cellular adaptations of zebu cattle to thermal stress. Anim Reprod Sci 82–83:349–360

    Article  PubMed  Google Scholar 

  • Hansen PJ (2007) Exploitation of genetic and physiological determinants of embryonic resistance to elevated temperature to improve embryonic survival in dairy cattle during heat stress. Theriogenology 68S:S242–S249

    Article  Google Scholar 

  • Hecker JG, McGarvey M (2011) Heat shock proteins as biomarkers for the rapid detection of brain and spinal cord ischemia: a review and comparison to other methods of detection in thoracic aneurysm repair. Cell Stress Chaperon 16:119–131

    Article  CAS  Google Scholar 

  • Hofmann GE, Todgham AE (2009) Living in the now: physiological mechanisms to tolerate a rapidly changing environment. Annu Rev Physiol 72:22.1–22.19

    Google Scholar 

  • Huynh TTT, Aarnink AJA, Versegen MWA, Gerrits WJJ, Heetkamp B, Canh TT (2005) Effcets of increasing temperature on physiological changes in pigs at different relative humidities. J Anim Sci 83:1385–1396

    PubMed  CAS  Google Scholar 

  • Iwaki K, Chi SH, Dillmann WH, Mestril R (1993) Induction of HSP70 in cultured rat neonatal cardiomyocytes by hypoxia and metabolic stress. Circulation 97:2023–2032

    Article  Google Scholar 

  • Jenouvrier S, Visser ME (2011) Climate change, phonological shifts, eco-evolutionary responses and population viability: toward a unifying predictive approach. Int J Biometeorol 55:905–919

    Article  PubMed  Google Scholar 

  • Kadzere CT, Murphy MR, Silanikove N, Maltz E (2002) Heat stress in lactating dairy cows: a review. Livest Prod Sci 77:59–91

    Article  Google Scholar 

  • Kamwanja LA, Chase CC Jr, Gutierrez JA, Guerriero V Jr, Olson TA, Hammond AC, Hansen PJ (1994) Responses of bovine lymphocytes to heat shock as modified by breed and antioxidant status. J Anim Sci 72:438–444

    PubMed  CAS  Google Scholar 

  • Kassahn KS, Crozier RH, Pörtner HO, Caley MJ (2009) Animal performance and stress: responses and tolerance limits at different levels of biological organisation. Biol Rev 84:277–292

    Article  PubMed  Google Scholar 

  • Khalifa HH (2003) Bioclimatology and adaptation of farm animals in a changing climate. In: Lacetera N, Bernabucci U, Khalifa HH, Ronchi B, Nordone A (eds) Interactions between climate and animal production. Wageningen Academic Publishers, The Netherlands

    Google Scholar 

  • King YT, Lin CS, Lin JH, Lee WC (2002) Whole-body hyperthermia-induced thermo tolerance is associated with the induction of heat shock protein 70 in mice. J Exp Biol 205:273–278

    PubMed  CAS  Google Scholar 

  • Langlois B (1994) Inter-breed variation in the horse in regard to cold adaptation: a review. Livest Prod Sci 40:1–7

    Article  Google Scholar 

  • Loeschcke V, Sørensen JG (2005) Acclimation, heat shock and hardening—a response from evolutionary biology. J Therm Biol 30:255–257

    Article  Google Scholar 

  • Mader TL, Davis MS, Brown-Brandl T (2006) Environmental factors influencing heat stress in feedlot cattle: feed and water intake. J Anim Sci 82:712–719

    Google Scholar 

  • Marcogliese DJ (2001) Implications of climate change for parasitism of animals in the aquatic environment. Can J Zool 79:1331–1352

    Article  Google Scholar 

  • Marruchella G, Di Leonardo M, Di Guardo G, Romanucci M, Mara M, Tiscar PG, Mosca F, Della Salda L (2004) Heat shock proteins (HSPs) 27, 72 and 73 in normal and pre-ulcerative mucosa of the gastric pars oesophagea in swine. J Comp Path 131:10–17

    Article  PubMed  CAS  Google Scholar 

  • May JD, Deaton JW, Branton SL (1987) Body temperature of acclimated broilers during exposure to high temperature. Poult Sci 66:378–380

    Article  PubMed  CAS  Google Scholar 

  • Mayer DG, Davison TM, McGowan MR, Young BA, Matshoss AL, Hall AB, Goodwin PJ, Gaughan JB (1999) Extent and economic impact effect of heat loads on dairy cattle production in Australia. Aust Vet J 77:804–808

    Article  PubMed  CAS  Google Scholar 

  • McManus C, Prescott E, Paludo GR, Bianchini E, Louvandini H, Mariante AS (2009) Heat tolerance in naturalized Brazilian cattle breeds. Livest Sci 120:256–264

    Article  Google Scholar 

  • Moseley PL (1997) Heat shock proteins and heat adaptation of the whole organism. J App Physiol 83:1413–1417

    CAS  Google Scholar 

  • Nichelmann M (2004) Perinatal epigenetic temperature adaptation in avian species: comparison of turkey and Muscovy duck. J Therm Biol 29:613–619

    Article  Google Scholar 

  • Nienaber JA, Hahn GL, Eigenberg RA (1999) Quantifying livestock responses for heat stress management: a review. Int J Biometeotol 42:183–188

    Article  CAS  Google Scholar 

  • Parsons PA (1994) Habitats, stress, and evolutionary rates. J Evolution Biol 7:387–397

    Article  Google Scholar 

  • Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 322:690–692

    Article  PubMed  Google Scholar 

  • Pörtner HO, Knust R (2007) Climate change affects marine fish through the oxygen limitation of thermal tolerance. Science 315:95–97

    Article  PubMed  Google Scholar 

  • Price EO (1984) Behavioral aspects of animal domestication. Q Rev Biol 59:1–32

    Article  Google Scholar 

  • Ramsey K (2010) Adaptive traits of sanga cattle: their importance in meeting the challenges associated with climate change in the tropics and sub tropics. Adv Anim Biosci 1:381–382

    Article  Google Scholar 

  • Santolaria P, Lopez-Gatius F, Garcia-Ispierto I, Bech-Sabat G, Angulo E, Carretero T, Sanchez JA, Yaniz J (2010) Effects of cumulative stressful and acute variation of farm climate conditions on late embryo/early feta loss in high producing dairy cows. Int J Biometeorol 54:93–98

    Article  PubMed  Google Scholar 

  • Shkolnik A, Choshniak I (1985) Physiological responses and productivity of goats. In: Yousef MK (ed) Stress physiology in livestock, volume II, Ungulates. CRC Press, Inc, Boca Raton

    Google Scholar 

  • Spees JL, Chang SA, Snyder MJ, Chang ES (2002) Thermal acclimation and stress in the American lobster, Homarusamericanus: equivalent temperature shifts elicit unique gene expression patters for molecular chaperones and polyubiquitin. Cell Stress Chaperones 7:97–106

    Article  PubMed  CAS  Google Scholar 

  • St-Pierre NR, Cobanov B, Schnitkey G (2003) Economic losses from heat stress by US livestock industries. J Dairy Sci 86(E Suppl):E52–E77

    Google Scholar 

  • Steinfeld H, Gerber P, Wasenaar T, Castel V, Rosales M, de Haan C (2006) Livestocks long shadow: environmental issues and options. FAO, Rome

    Google Scholar 

  • Sullivan ML, Cawdell-Smith AJ, Mader TL, Gaughan JB (2011) Effect of shade area on performance and welfare of short-fed feedlot cattle. J Anim Sci 89:2911–2925

    Article  PubMed  CAS  Google Scholar 

  • Sutherst RW (2001) The vulnerability of animal and human health to parasites under global change. Int J Parasitol 31:933–948

    Article  PubMed  CAS  Google Scholar 

  • Tabachnick WJ (2010) Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world. J Exp Biol 213:946–954

    Article  PubMed  CAS  Google Scholar 

  • Taylor NAS (2006) Ethnic differences in thermoregulation: genotypic versus phenotypic heat adaptation. J Therm Biol 31:90–104

    Article  Google Scholar 

  • Thornton PK, van de Steeg J, Notenbaert A, Herrero M (2009) The impacts of climate change on livestock and livestock systems in developing countries: a review of what we know and what we need to know. Agric Sys 101:113–127

    Article  Google Scholar 

  • Willmer P, Stone G, Johnston I (2006) Environmental physiology of animals, 2nd edn. Blackwell Publishing Ltd, Oxford

    Google Scholar 

  • Yahav S, Plavnik I (1999) Effect of early-stage thermal conditioning and food restrictions on performance and thermo tolerance of male broiler chickens. Br Poult Sci 40:120–126

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John B. Gaughan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gaughan, J.B. (2012). Basic Principles Involved in Adaption of Livestock to Climate Change. In: Sejian, V., Naqvi, S., Ezeji, T., Lakritz, J., Lal, R. (eds) Environmental Stress and Amelioration in Livestock Production. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29205-7_10

Download citation

Publish with us

Policies and ethics