Skip to main content

Design of Wireless Sensor Networks Considering the Robustness of the Topology

  • Conference paper

Abstract

In wireless sensor networks, the sensor nodes are facing the random failure and the selective attacks all the time, which will cause partial or even entire network disintegrating. How to control the failures resulted from random failure or the selective attacks has become a hot topic in recent years. In this paper, we applied three matching models of capacity on three common kinds of wireless sensor network topology, and each model developed a profit function to defense cascading failures. Performances of the proposed matching models of capacity are evaluated using computer simulations. By studying the relationship between network investment and robustness, we find that NM model can defend against cascading failures better and requires a lower investment cost when higher robustness is required .The network performance analysis and the simulation results indicated that it can improve network robustness and invulnerability which are particularly important for the design of networks after applying this algorithm in the wireless sensor network.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Li, D., Wong, K.D., Yu, H.H., Sayeed, A.M.: Detection, classification, and tracking of targets. IEEE Signal Process. Mag. 19(3), 17–29 (2002)

    Google Scholar 

  2. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: The design of an acquisitional query processor for sensor networks. In: Proceedings of the SIGMOD Conference, pp. 491–502. ACM Press, New York (2003)

    Google Scholar 

  3. Ma, Z.C., Sun, Y.N., Mei, T.: Survey on wireless sensors network. Journal on Communications 25(4), 114–124 (2004)

    Google Scholar 

  4. Almomani, I., Al-Akaidi, M., Reynolds, P., Ivins, J.: Architectural framework for wireless mobile adhoc networks. Computer Communications 30(1), 178–191 (2006)

    Article  Google Scholar 

  5. Smart Dust, http://robotics.eecs ; Berkeley, Edu/~pister/SmartDust/

  6. Aldosari, S.A., Moura, J.M.F.: Detection in decentralized sensor networks. In: Proc. ICASSP, Montreal, QC, Canada, May 2004, pp. 277–280 (2004)

    Google Scholar 

  7. Chamberland, J.-F., Veeravalli, V.V.: Asymptotic results for decentralized detection in power constrained wireless sensor networks. IEEE J. Sel. Areas Commun. 22(6), 1007–1015 (2004)

    Article  Google Scholar 

  8. Tsitsiklis, J.N.: Decentralized detection by a large number of sensors. Math. Control Signals Syst. 1(2), 167–182 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. D’Costa, A., Ramachandran, V., Sayeed, A.M.: Distributed classification of Gaussian space-time sources in wireless sensor networks. IEEE J. Sel. Areas Commun. 22(6), 1026–1036 (2004)

    Article  Google Scholar 

  10. Paul, G., Tanizawa, T., Havlin, H., et al.: Optimization of robustness of complex networks. Eur. Phys. J B 38, 187–191 (2004)

    Article  Google Scholar 

  11. Albert, R., Jeong, H., Barabási, A.-L.: Error and attack tolerance of complex networks. J. Nature 406, 378–382 (2000)

    Article  Google Scholar 

  12. Watt, D.J., Strogtz, S.H.: Collective dynamics of small-world networks. J. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  13. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. J. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Newman, M.E.J.: Model of the small world. Journal of Statistical Physics 101, 819–841 (2000)

    Article  MATH  Google Scholar 

  15. Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)

    Article  Google Scholar 

  16. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Reviews of Modern Physics 74, 47–97 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of networks. Advances in Physics 51, 1079–1187 (2002)

    Article  Google Scholar 

  18. Schafer, M., Scholz, J., Greiner, M.: Proactive Robustness Control of Heterogeneously Loaded Networks. Phys. Rev. Lett. 96, 108701 (2006)

    Article  Google Scholar 

  19. Holme, P., Kim, B.J., Yoon, C.N., Han, S.K.: Attack vulnerability of complex networks. Phys. Rev. E 65, 056109 (2002)

    Google Scholar 

  20. Zhao, L., Park, K., Lai, Y.C.: Attack vulnerability of scale-free networks due to cascading breakdown. Phys. Rev. E 70, 035101(R) (2004)

    Article  Google Scholar 

  21. Motter, A.E.: Cascade Control and Defense in Complex Networks. Phys. Rev. Lett. 93, 098701 (2004)

    Article  Google Scholar 

  22. Crucitti, P., Latora, V., Marchiori, M.: Model for cascading failures in complex networks. Phys. Rev. E 69, 045104(R)(2004)

    Article  Google Scholar 

  23. Pister, K., Hohlt, B., Jeong, J., Doherty, L., Vainio, J.P.: Ivy-A sensor network infrastructure (EB/OL) (2003), http://www-bsac.eecs.berkeley.edu/projects/ivy

  24. Corson, S., Macker, J., Batsell, S.: Architectural considerations for mobile mesh networking. Internet Draft RFC Version 2 (1996)

    Google Scholar 

  25. Warneke, B., Last, M., Liebowitz, B., Pister, K.S.J.: Smart dust: Communicating with a Cubic-millimeter computer. IEEE Computer Magazine 34(1), 44–51 (2001)

    Article  Google Scholar 

  26. Tilak, S., Abu-Ghazaleh, N.B., Heinzelman, W.: A taxonomy of wireless micro-sensor network models. J. Mobile Computing and Communication Review 1(2), 1–8 (2002)

    Google Scholar 

  27. Li, J.Z., Li, J.B., Shi, S.F.: Concepts, issues and advance of sensor networks and data management of sensor networks. J. Journal of Software 14(10), 1717–1727 (2003)

    MATH  Google Scholar 

  28. Peters, L., Moerman, I., Dhoedt, B., Demeester, P.: Q-WEHROM: Mobility support and resource reservations for mobile senders and receivers. J. Computer Networks 50(6), 1158–1175 (2006)

    Article  Google Scholar 

  29. Bonnet, P., Gehrke, J., Seshadri, P.: Querying the physical world. IEEE Personal Communication 7(5), 10–15 (2000)

    Article  Google Scholar 

  30. Tanizawa, T., Paul, G., Cohen, R., Havlin, S., Stanley, H.E.: Optimization of network robustness to waves of targeted and random attacks. J. Phys. Rev. E 71, 047101 (2005)

    Article  Google Scholar 

  31. Cohen, R., Erez, K., ben-Avraham, D., Havlin, S.: Resilience of the internet to random breakdowns. J. Phys. Rev. Lett. 85, 4626 (2000)

    Article  Google Scholar 

  32. Cohen, R., Erez, K., ben-Avraham, D., Havlin, S.: Breakdown of the internet under intentional attack. J. Phys. Rev. Lett. 86, 3682 (2001)

    Article  Google Scholar 

  33. Motter, E.A.: Cascade control and defense in complex networks. Physical Review Letters 93(9), 98701 (2004)

    Article  Google Scholar 

  34. Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45(2), 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Motter, A.E., Lai, Y.-C.: Cascade-based attacks on complex networks. J. Phys. Rev. E 66, 065102 (2002)

    Article  Google Scholar 

  36. Wang, B., Kim, B.J.: A High Robustness and Low Cost Model for Cascading Failures. J. Europhys. Lett. 78, 48001 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Tan, YD., Huang, XQ., Cai, Y., Tan, Y., Chen, AG. (2012). Design of Wireless Sensor Networks Considering the Robustness of the Topology. In: Sénac, P., Ott, M., Seneviratne, A. (eds) Wireless Communications and Applications. ICWCA 2011. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 72. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29157-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29157-9_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29156-2

  • Online ISBN: 978-3-642-29157-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics