Advertisement

Electrical Load Management in Smart Homes Using Evolutionary Algorithms

  • Florian Allerding
  • Marc Premm
  • Pradyumn Kumar Shukla
  • Hartmut Schmeck
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7245)

Abstract

In this paper, we focus on a real world scenario of energy management of a smart home. External variable signals, reflecting the low voltage grid’s state, are used to address the challenge of balancing energy demand and supply. The problem is formulated as a nonlinear integer programming problem and a load management system, based on a customized evolutionary algorithm with local search, is proposed to control intelligent appliances, decentralized power plants and electrical storages in an optimized way with respect to the given external signals. The nonlinearities present in the integer programming problem makes it difficult for exact solvers. The results of this paper show the efficacy of evolutionary algorithms for solving such combinatorial problems.

Keywords

Nonlinear Integer Program Energy Management Evolutionary Algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abras, S., Ploix, S., Pesty, S., Jacomino, M.: A multi-agent home automation system for power management. In: Informatics in Control Automation and Robotics. Lecture Notes in Electrical Engineering. Springer (2009)Google Scholar
  2. 2.
    Allerding, F., Schmeck, H.: Organic smart home - architecture for energy management in intelligent buildings. In: ICAC 2011 (2011)Google Scholar
  3. 3.
    Bao, K., Allerding, F., Schmeck, H.: User behavior prediction for energy management in smart homes. In: Proceedings of the FSKD 2011 (2011)Google Scholar
  4. 4.
    Fischer, A., Shukla, P.K.: A Levenberg-Marquardt algorithm for unconstrained multicriteria optimization. Oper. Res. Lett. 36(5), 643–646 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Fischer, A., Shukla, P.K., Wang, M.: On the inexactness level of robust levenberg–marquardt methods. Optimization 59(2), 273–287 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Guldemond, T., Hurink, J., Paulus, J., Schutten, J.: Time-constrained project scheduling. Journal of Scheduling (2008)Google Scholar
  7. 7.
    Li, D., Sun, X.: Nonlinear integer programming. International Series in Operations Research & Management Science, p. 84. Springer, New York (2006)zbMATHGoogle Scholar
  8. 8.
    Meier, H., Fünfgeld, C., Schieferdecker, B.: Repräsentative VDEW-Lastprofile. Tech. rep., Verband der Elektrizitätswirschaft (1999)Google Scholar
  9. 9.
    Mesghouni, K., Hammadi, S.: Evolutionary algorithms for job-shop scheduling. Applied Mathematics and Computer Science (2004)Google Scholar
  10. 10.
    Müller-Schloer, C., Schmeck, H., Ungerer, T.: Organic Computing - A Paradigm Shift for Complex Systems. Birkhauser Verlag AG (2011)Google Scholar
  11. 11.
    Williams, H.P.: Model building in mathematical programming, 3rd edn. A Wiley-Interscience Publication, John Wiley & Sons Ltd, Chichester (1990)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Florian Allerding
    • 1
  • Marc Premm
    • 2
  • Pradyumn Kumar Shukla
    • 1
  • Hartmut Schmeck
    • 1
  1. 1.Karlsruhe Institute of Technology – Institute AIFBKarlsruheGermany
  2. 2.Universität HohenheimStuttgart-HohenheimGermany

Personalised recommendations