Skip to main content

D 2 MOPSO: Multi-Objective Particle Swarm Optimizer Based on Decomposition and Dominance

  • Conference paper
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7245))

Abstract

D 2 MOPSO is a multi-objective particle swarm optimizer that incorporates the dominance concept with the decomposition approach. Whilst decomposition simplifies the multi-objective problem (MOP) by rewriting it as a set of aggregation problems, solving these problems simultaneously, within the PSO framework, might lead to premature convergence because of the leader selection process which uses the aggregation value as a criterion. Dominance plays a major role in building the leader’s archive allowing the selected leaders to cover less dense regions avoiding local optima and resulting in a more diverse approximated Pareto front. Results from 10 standard MOPs show D 2 MOPSO outperforms two state-of-the-art decomposition based evolutionary methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhang, Q., Li, H.: MOEA/D: A multi-objective evolutionary algorithm based on decomposition. IEEE Trans. on Evolutionary Computation 11(6), 712–731 (2007)

    Article  Google Scholar 

  2. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-ii. IEEE Trans. on Evolutionary Computation 13(2), 284–302 (2009)

    Article  Google Scholar 

  3. Awwad Shiekh Hasan, B., Gan, J.Q., Zhang, Q.: Multi-objective evolutionary methods for channel selection in brain-computer interfaces: some preliminary experimental results. In: WCCI. IEEE (2010)

    Google Scholar 

  4. Wang, Z., Durst, G.L., Eberhart, R.C., Boyd, D.B., Ben Miled, Z.: Particle swarm optimization and neural network application for qsar. In: Parallel and Distributed Processing Symposium, International, vol. 10, p. 194 (2004)

    Google Scholar 

  5. Jaishia, B., Ren, W.: Finite element model updating based on eigenvalue and strain. Mechanical Systems and Signal Processing 21(5), 2295–2317 (2007)

    Article  Google Scholar 

  6. Al Moubayed, N., Petrovski, A., McCall, J.: Multi-objective optimisation of cancer chemotherapy using smart pso with decomposition. In: 3rd IEEE Sym. Comp. Intel. IEEE (2011)

    Google Scholar 

  7. Reyes-Sierra, M., Coello, C.A.C.: Multi-objective particle swarm optimizers: A survey of the state-of-the-art. International Journal of Computational Intelligence Research 2(3), 287–308 (2006)

    MathSciNet  Google Scholar 

  8. Baltar, A.M., Fontane, D.G.: A generalized multiobjective particle swarm optimization solver for spreadsheet models: application to water quality. In: The Twenty Sixth Annual American Geophysical Union Hydrology Days (2006)

    Google Scholar 

  9. Hassan, R., Cohanim, B., de Weck, O., Venter, G.: A comparison of particle swarm optimization and the genetic algorithm. In: Structural Dynamics and Materials, Texas, USA (2005)

    Google Scholar 

  10. Al Moubayed, N., Petrovski, A., McCall, J.: A novel smart multi-objective particle swarm optimisation using decomposition. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI, Part II. LNCS, vol. 6239, pp. 1–10. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Martínez, S.Z., Coello, C.A.C.: A multi-objective particle swarm optimizer based on decomposition. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO 2011. ACM (2011)

    Google Scholar 

  12. Sierra, M.R., Coello, C.A.C.: Improving PSO-Based Multi-objective Optimization Using Crowding, Mutation and ε-Dominance. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 505–519. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm intelligence. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  14. Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Genetic and Evolutionary Computation. Springer, New York (2007)

    MATH  Google Scholar 

  15. El-Ghazali, T.: Metaheuristics: from design to implementation. John Wiley & Sons (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Al Moubayed, N., Petrovski, A., McCall, J. (2012). D 2 MOPSO: Multi-Objective Particle Swarm Optimizer Based on Decomposition and Dominance. In: Hao, JK., Middendorf, M. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2012. Lecture Notes in Computer Science, vol 7245. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29124-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29124-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29123-4

  • Online ISBN: 978-3-642-29124-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics