Advertisement

The Vehicle Routing Problem with Backhauls: A Multi-objective Evolutionary Approach

  • Abel Garcia-Najera
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7245)

Abstract

In the Vehicle Routing Problem with Backhauls there are linehaul customers, who demand products, and backhaul customers, who supply products, and there is a fleet of vehicles available for servicing customers. The problem consists in finding a set of routes with the minimum cost, such that all customers are serviced. A generalization of this problem considers the collection from the backhaul customers optional. If the number of vehicles, the cost, and the uncollected demand are assumed to be equally important objectives, the problem can be tackled as a multi-objective optimization problem. In this paper, we solve these as multi-objective problems with an adapted previously proposed evolutionary algorithm and evaluate its performance with proper tools.

Keywords

Multi-objective optimization vehicle routing problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baldacci, R., Bartolini, E., Laporte, G.: Some applications of the generalized vehicle routing problem. J. Oper. Res. Soc. 61(7), 1072–1077 (2010)zbMATHGoogle Scholar
  2. 2.
    Brandão, J.: A new tabu search algorithm for the vehicle routing problem with backhauls. Eur. J. Oper. Res. 173(2), 540–555 (2006)zbMATHCrossRefGoogle Scholar
  3. 3.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE T. on Evolut. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  4. 4.
    Franks, J.: A (Terse) Introduction to Lebesgue Integration. AMS (2009)Google Scholar
  5. 5.
    Gajpal, Y., Abad, P.L.: Multi-ant colony system (MACS) for a vehicle routing problem with backhauls. Eur. J. Oper. Res. 196(1), 102–117 (2009)zbMATHCrossRefGoogle Scholar
  6. 6.
    Garcia-Najera, A.: Preserving population diversity for the multi-objective vehicle routing problem with time windows. In: Rothlauf, F. (ed.) Genetic and Evolutionary Computation Conference 2009, pp. 2689–2692. ACM (2009)Google Scholar
  7. 7.
    Garcia-Najera, A., Bullinaria, J.A.: An improved multi-objective evolutionary algorithm for the vehicle routing problem with time windows. Comput. Oper. Res. 38(1), 287–300 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Goetschalckx, M., Jacobs-Blecha, C.: The vehicle routing problem with backhauls. Eur. J. Oper. Res. 42(1), 39–51 (1989)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Laporte, G.: Fifty years of vehicle routing. Transport. Sci. 43(4), 408–416 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Osman, I.H., Wassan, N.A.: A reactive tabu search meta-heuristic for the vehicle routing problem with back-hauls. J. Sched. 5(4), 263–285 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Ropke, S., Pisinger, D.: A unified heuristic for a large class of vehicle routing problems with backhauls. Eur. J. Oper. Res. 171(3), 750–775 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Toth, P., Vigo, D.: A heuristic algorithm for the symmetric and asymmetric vehicle routing problems with backhauls. Eur. J. Oper. Res. 113(3), 528–543 (1999)zbMATHCrossRefGoogle Scholar
  13. 13.
    Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN V 1998. LNCS, vol. 1498, pp. 292–304. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Abel Garcia-Najera
    • 1
  1. 1.Departamento de Ingeniería Eléctrica, División de Ciencias Básicas e IngenieríaUniversidad Autónoma Metropolitana – IztapalapaMéxico, D. F.México

Personalised recommendations