Advertisement

Splitting Method for Spatio-temporal Sensors Deployment in Underwater Systems

  • Mathieu Chouchane
  • Sébastien Paris
  • François Le Gland
  • Mustapha Ouladsine
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7245)

Abstract

In this paper, we present a novel stochastic optimization algorithm based on the rare events simulation framework for sensors deployment in underwater systems. More precisely, we focus on finding the best spatio-temporal deployment of a set of sensors in order to maximize the detection probability of an intelligent and randomly moving target in an area under surveillance. Based on generalized splitting technique with a dedicated Gibbs sampler, our approach does not require any state-space discretization and rely on the evolutionary framework.

Keywords

Evolutionary algorithm Stochastic optimization Generalized splitting Genetic algorithm Gibbs sampler 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bäck, T., Schwefel, H.P.: An overview of evolutionary algorithms for parameter optimization. Evol. Comput. 1, 1–23 (1993), http://dx.doi.org/10.1162/evco.1993.1.1.1 CrossRefGoogle Scholar
  2. 2.
    Bekker, J., Aldrich, C.: The cross-entropy method in multi-objective optimisation: An assessment. European Journal of Operational Research 211(1), 112–121 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    de Boer, P.T., Kroese, D., Mannor, S., Rubinstein, R.: A tutorial on the cross-entropy method. Annals of Operations Research 134(1), 19–67 (2005), http://dx.doi.org/10.1007/s10479-005-5724-z MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Botev, Z., Kroese, D.: An efficient algorithm for rare-event probability estimation, combinatorial optimization, and counting. Methodology and Computing in Applied Probability 10(4), 471–505 (2008), http://dx.doi.org/10.1007/s11009-008-9073-7 MathSciNetCrossRefGoogle Scholar
  5. 5.
    Boubezoul, A., Paris, S., Ouladsine, M.: Application of the cross entropy method to the GLVQ algorithm. Pattern Recogn. 41, 3173–3178 (2008), http://portal.acm.org/citation.cfm?id=1385702.1385950 zbMATHCrossRefGoogle Scholar
  6. 6.
    Bouzarkouna, Z., Auger, A., Ding, D.Y.: Investigating the Local-Meta-Model CMA-ES for Large Population Sizes. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcazar, A.I., Goh, C.-K., Merelo, J.J., Neri, F., Preuß, M., Togelius, J., Yannakakis, G.N. (eds.) EvoApplicatons 2010, Part I. LNCS, vol. 6024, pp. 402–411. Springer, Heidelberg (2010), http://hal.archives-ouvertes.fr/hal-00450238/en/ CrossRefGoogle Scholar
  7. 7.
    Chouchane, M., Paris, S., Le Gland, F., Ouladsine, M.: Splitting method for spatio-temporal search efforts planning (May 2011), http://arxiv.org/abs/1105.3351v1
  8. 8.
    Dell, R.F., Eagle, J.N., Alves Martins, G.H., Garnier Santos, A.: Using multiple searchers in constrained-path, moving-target search problems. Naval Research Logistics 43(4), 463–480 (1996)zbMATHCrossRefGoogle Scholar
  9. 9.
    Dianonis, P., Holmes, S.: Three examples of Monte-Carlo Markov chains. Discrete Probability and Algorithms, 43–56 (1994)Google Scholar
  10. 10.
    Grabisch, M.: L’utilisation de l’int’egrale de Choquet en aide multicritère à la décision. Newsletter of the European Working Group “Multicriteria Aid for Decision” 3(14), 5–10 (2006)Google Scholar
  11. 11.
    Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation, pp. 312–317. Morgan Kaufmann (1996)Google Scholar
  12. 12.
    Hohzaki, R., Washburn, A.: The diesel submarine flaming datum problem. Military Operations Research 6(4), 19–30 (2001)CrossRefGoogle Scholar
  13. 13.
    Akbari, R., Ziarati, K.: A multilevel evolutionary algorithm for optimizing numerical functions. International Journal of Industrial Engineering Computations 2, 419–430 (2011)CrossRefGoogle Scholar
  14. 14.
    Rodrigues, C., Michelon, P., Quadri, D.: Un modèle bi-niveau pour le problème de la recherche d’une cible dynamique. MajecSTIC 2009 (2009)Google Scholar
  15. 15.
    Rong Li, X., Jilkov, V.P.: Survey of maneuvering target tracking. Part i. Dynamic models. IEEE Transactions on Aerospace and Electronic Systems 39(4), 1333–1364 (2003), http://dx.doi.org/10.1109/TAES.2003.1261132 CrossRefGoogle Scholar
  16. 16.
    Rubinstein, R.Y.: The Gibbs cloner for combinatorial optimization, counting and sampling. Methodology and Computing in Applied Probability 11(4), 491–549 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Son, B.: Tracking Spacing for an Archimedes Spiral Search by a Maritime Patrol Aircraft (MPA) in Anti-submarine Warfare (ASW) Operations. Master’s thesis, Naval Postgraduate School (December 2007)Google Scholar
  18. 18.
    Washburn, A.: Search and Detection. INFORMS (2002)Google Scholar
  19. 19.
    Washburn, A.: Branch and bound methods for a search problem. Naval Research Logistics 45(3), 243–257 (1998)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mathieu Chouchane
    • 1
  • Sébastien Paris
    • 1
  • François Le Gland
    • 2
  • Mustapha Ouladsine
    • 1
  1. 1.LSISAix-Marseille University, Domaine universitaire de Saint-JérômeMarseille Cedex 20France
  2. 2.INRIA RennesRennes CedexFrance

Personalised recommendations