Intensification/Diversification-Driven ILS for a Graph Coloring Problem

  • Samir Loudni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7245)


This paper presents an extension of the ILS algorithm, called ID-ILS, by introducing new local search devices that enforce an efficient tradeoff of intensification and diversification. Experiments performed on the DIMACS benchmarks show that our method is competitive with the best coloring algorithms.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burke, E.K., Marecek, J., Parkes, A.J., Rudová, H.: A supernodal formulation of vertex colouring with applications in course timetabling. Annals OR 179(1), 105–130 (2010)zbMATHCrossRefGoogle Scholar
  2. 2.
    Gamache, M., Hertz, A., Ouellet, J.O.: A graph coloring model for a feasibility problem in monthly crew scheduling with preferential bidding. Computers & OR 34(8), 2384–2395 (2007)zbMATHCrossRefGoogle Scholar
  3. 3.
    Malaguti, E., Toth, P.: A survey on vertex coloring problems. Intl. Trans. in Op. Res. 17(1), 1475–3995 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Blöchliger, I., Zufferey, N.: A graph coloring heuristic using partial solutions and a reactive tabu scheme. Computers & OR 35(3), 960–975 (2008)zbMATHCrossRefGoogle Scholar
  5. 5.
    Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Computing 39(4), 345–351 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Hertz, A., Plumettaz, M., Zufferey, N.: Variable space search for graph coloring. Discrete Applied Mathematics 156(13), 2551–2560 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Morgenstern, C.: Distributed coloration neighborhood search. DIMACS Series, vol. 26, pp. 335–357. Providence, RI (1996)Google Scholar
  8. 8.
    Fleurent, C., Ferland, J.: Genetic and hybrid algorithms for graph coloring. Annals of Operations Research 63(3), 437–461 (1996)zbMATHCrossRefGoogle Scholar
  9. 9.
    Galinier, P., Hao, J.K.: Hybrid evolutionary algorithms for graph coloring. J. Comb. Optim. 3(4), 379–397 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Lü, Z., Hao, J.K.: A memetic algorithm for graph coloring. European Journal of Operational Research 203(1), 241–250 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Malaguti, E., Monaci, M., Toth, P.: A metaheuristic approach for the vertex coloring problem. INFORMS Journal on Computing 20(2), 302–316 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Lourenço, H.R., Martin, O., Stützle, T.: Iterated local search: Framework and applications. In: Handbook of Metaheuristics, vol. 146, pp. 363–397. Springer, New York (2010)CrossRefGoogle Scholar
  13. 13.
    Linhares, A., Yanasse, H.: Search intensity versus search diversity: a false trade off? Appl. Intell. 32(3), 279–291 (2010)CrossRefGoogle Scholar
  14. 14.
    Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers (1997)Google Scholar
  15. 15.
    Neveu, B., Trombettoni, G., Glover, F.: ID Walk: A Candidate List Strategy with a Simple Diversification Device. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 423–437. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Trick, M.: Computational symposium: Graph coloring and its generalizations. Cornell University, Ithaca, NY (2002),
  17. 17.
    Avanthay, C., Hertz, A., Zufferey, N.: A variable neighborhood search for graph coloring. European Journal of Operational Research 151(2), 379–388 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Loudni, S., Boizumault, P., Levasseur, N.: Advanced generic neighborhood heuristics for vns. Eng. Appl. of AI 23(5), 736–764 (2010)Google Scholar
  19. 19.
    Chiarandini, M., Stützle, T.: An application of iterated local search to graph coloring. In: Proceedings of the Comput. Symposium on Graph Coloring and its Generalizations, Ithaca, New York, USA, pp. 112–125 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Samir Loudni
    • 1
  1. 1.Université de Caen Basse-Normandie, UMR 6072 GREYCCaenFrance

Personalised recommendations