Advertisement

Exact Computation of the Fitness-Distance Correlation for Pseudoboolean Functions with One Global Optimum

  • Francisco Chicano
  • Enrique Alba
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7245)

Abstract

Landscape theory provides a formal framework in which combinatorial optimization problems can be theoretically characterized as a sum of a special kind of landscapes called elementary landscapes. The decomposition of the objective function of a problem into its elementary components can be exploited to compute summary statistics. We present closed-form expressions for the fitness-distance correlation (FDC) based on the elementary landscape decomposition of the problems defined over binary strings in which the objective function has one global optimum. We present some theoretical results that raise some doubts on using FDC as a measure of problem difficulty.

Keywords

Landscape theory fitness landscapes fitness-distance correlation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angel, E., Zissimopoulos, V.: On the landscape ruggedness of the quadratic assignment problem. Theoretical Computer Science 263, 159–172 (2000)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Barnes, J.W., Dimova, B., Dokov, S.P.: The theory of elementary landscapes. Applied Mathematics Letters 16, 337–343 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bierwirth, C., Mattfeld, D., Watson, J.P.: Landscape Regularity and Random Walks for the Job-Shop Scheduling Problem. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2004. LNCS, vol. 3004, pp. 21–30. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Chicano, F., Alba, E.: Elementary landscape decomposition of the 0-1 unconstrained quadratic optimization. Journal of Heuristics (10.1007/s10732-011-9170-6)Google Scholar
  5. 5.
    Chicano, F., Alba, E.: Exact computation of the expectation curves of the bit-flip mutation using landscapes theory. In: GECCO, pp. 2027–2034 (2011)Google Scholar
  6. 6.
    Chicano, F., Whitley, L.D., Alba, E.: A methodology to find the elementary landscape decomposition of combinatorial optimization problems. Evolutionary Computation 19(4), 597–637 (2011)CrossRefGoogle Scholar
  7. 7.
    Feinsilver, P., Kocik, J.: Krawtchouk polynomials and krawtchouk matrices. In: Recent Advances in Applied Probability, pp. 115–141. Springer, US (2005)CrossRefGoogle Scholar
  8. 8.
    García-Pelayo, R., Stadler, P.: Correlation length, isotropy and meta-stable states. Physica D: Nonlinear Phenomena 107(2-4), 240–254 (1997)CrossRefGoogle Scholar
  9. 9.
    Glover, F., Alidaee, B., Rego, C., Kochenberger, G.: One-pass heuristics for large-scale unconstrained binary quadratic problems. EJOR 137(2), 272–287 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: GECCO, pp. 184–192. Morgan Kaufmann (1995)Google Scholar
  11. 11.
    Kinnear Jr., K.E.: Fitness landscapes and difficulty in genetic programming. In: IEEE CEC, vol. 1, pp. 142–147 (June 1994)Google Scholar
  12. 12.
    Lu, G., Bahsoon, R., Yao, X.: Applying elementary landscape analysis to search-based software engineering. In: Proceedings of SSBSE (2010)Google Scholar
  13. 13.
    Palubeckis, G.: Multistart tabu search strategies for the unconstrained binary quadratic optimization problem. Annals of Oper. Research 131, 259–282 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Rana, S., Heckendorn, R.B., Whitley, D.: A tractable walsh analysis of SAT and its implications for genetic algorithms. In: Proceedings of AAAI, pp. 392–397 (1998)Google Scholar
  15. 15.
    Reidys, C.M., Stadler, P.F.: Combinatorial landscapes. SIAM Review 44(1), 3–54 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Stadler, P.F.: Toward a theory of landscapes. In: López-Peña, R., Capovilla, R., García-Pelayo, R., Waelbroeck, H., Zertruche, F. (eds.) Complex Systems and Binary Networks, pp. 77–163. Springer (1995)Google Scholar
  17. 17.
    Stadler, P.F.: Fitness Landscapes. In: Biological Evolution and Statistical Physics, pp. 183–204. Springer (2002)Google Scholar
  18. 18.
    Sutton, A.M., Whitley, D., Howe, A.E.: Mutation rates of the (1+1)-EA on pseudo-boolean functions of bounded epistasis. In: GECCO, pp. 973–980. ACM (2011)Google Scholar
  19. 19.
    Sutton, A.M., Whitley, L.D., Howe, A.E.: Computing the moments of k-bounded pseudo-boolean functions over hamming spheres of arbitrary radius in polynomial time. Theoretical Computer Science (10.1016/j.tcs.2011.02.006)Google Scholar
  20. 20.
    Sutton, A.M., Whitley, L.D., Howe, A.E.: A polynomial time computation of the exact correlation structure of k-satisfiability landscapes. In: Proceedings of GECCO, pp. 365–372. ACM, New York (2009)CrossRefGoogle Scholar
  21. 21.
    Tomassini, M., Vanneschi, L., Collard, P., Clergue, M.: A study of fitness distance correlation as a difficulty measure in genetic programming. Evolutionary Computation 13(2), 213–239 (2005)CrossRefGoogle Scholar
  22. 22.
    Whitley, D., Sutton, A.M., Howe, A.E.: Understanding elementary landscapes. In: Proceedings of GECCO, pp. 585–592. ACM, New York (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Francisco Chicano
    • 1
  • Enrique Alba
    • 1
  1. 1.University of MálagaSpain

Personalised recommendations