Skip to main content

Electrochemical Impedance Spectroscopy

  • Chapter
  • First Online:
Plant Electrophysiology

Abstract

Electrochemical impedance spectroscopy (EIS) is a method to study the characteristics of organic and inorganic materials, based on their passive electrical properties, determined by the observation of the tissue electrical response to the passage of external electrical energy. The impedance and phase angles of the materials is measured by a multiple frequency impedance analyzer (impedance meter) that is able to scan each sample at different frequencies. Electrochemical impedance have been widely used to estimate plant health, their nutrient status, mineral deficiency, presence of viruses, fruit damages, structural cellular variation during fruit ripening, freeze or chill damages, sensitivity to salinity, and measurement of root system growth in trees. In all these studies EIS measurements provided a means of nondestructively analyzing variation in intra- and extracellular resistances and in the condition of the membranes.The fundamental studies and some applications of EIS for the field of plant science are described, particularly in relation to root growth and development, seed quality, environmental stresses, and fruits damages or ripening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackmann JJ, Seitz MA (1984) Methods of complex impedance measurements in biological tissues. CRC Crit Rev Biomed Eng 11:281–311

    CAS  Google Scholar 

  • Bauchot AD, Harker FR, Arnold WM (2000) The use of electrical impedance spectroscopy to assess the physiological condition of kiwifruit. Post Biol Technol 18:9–18

    Article  Google Scholar 

  • Burr K, Hawkins C, L’Hindorelle S, Binder W, George M, Repo T (2001) Methods for measuring cold hardiness of conifers. In: Bigras FJ, Colombo SJ (eds) Conifer cold hardiness. Kluwer Academic Publishers, Dordrecht, pp 369–401

    Google Scholar 

  • Cao Y, Repo T, Silvennoinen R, Lehto T, Pelkonen P (2011) Analysis of willow root system by electrical impedance spectroscopy. J Exp Bot 62:351–358

    Article  PubMed  CAS  Google Scholar 

  • Cole KS (1940) Permeability and impermeability of cell membranes for ions. Cold Spring Harb Symp Quant Biol 8:110–122

    Article  CAS  Google Scholar 

  • Cole KS (1972) Membranes, ions and impulses. University of California Press, Berkeley

    Google Scholar 

  • Cole KS, Cole RH (1941) Dispersion and adsorption in dielectrics alternating current characteristics. J Chem Phys 9:341–352

    Article  CAS  Google Scholar 

  • Coster HGL, Chilcott TC, Coster ACF (1996) Impedance spectroscopy of interfaces, membranes and ultrastructures. Bioelectrochem Bioenerg 40:79–98

    Article  CAS  Google Scholar 

  • Dalton F (1995) In situ root extent measurements by electrical capacitance methods. Plant Soil 173:157–165

    Article  CAS  Google Scholar 

  • Filho PB (2002) Tissue characterisation using an impedance spectroscopy probe. PhD thesis, Department of Medical Physiscs and Chemical Engineering, University of Sheffield

    Google Scholar 

  • Foster KR, Schwan HP (1989) Dielectric properties of tissues and biological materials: a critical review. In: Bourne JR (ed) Critical reviews in biomedical engineering. CRC Press, Boca Raton, pp 25–104

    Google Scholar 

  • Furmanski RJ, Buescher RW (1979) Influence of chilling on electrolyte leakage and internal conductivity of peach fruits. HortSci 14:167–168

    CAS  Google Scholar 

  • Harker FR, Forbes SK (1997) Ripening and development of chilling injury in persimonn fruit: an electrical impedance study. NZ J Crop Hort Sci 25:149–157

    Article  Google Scholar 

  • Harker FR, Maindonald JH (1994) Ripening of nectarine fruit. Changes in the cell wall, vacuole, and membrane detected using electrical impedance measurements. Plant Physiol 106:165–171

    PubMed  CAS  Google Scholar 

  • Hayden RI, Moyse CA, Calder FW, Crawford DP, Fensom DS (1969) Electrical impedance studies on potato and alfalfa tissue. J Exp Bot 20:177–200

    Article  Google Scholar 

  • Inaba A, Manabe T, Tsuji H, Iwamoto T (1995) Electrical impedance analysis of tissue properties associated with ethylene induction by electric currents in cucumber (Cucumis sativus L.). Plant Physiol 107:199–205

    PubMed  CAS  Google Scholar 

  • Ivorra A (2003) Bioimpedance monitoring for physicians: an overview. Centre Nacional de Microelectrònica Biomedical Applications Group

    Google Scholar 

  • Kanai H, Haemo M, Sakamoto K (1987) Electrical measurements of fluid distribution in legs and arms. Med Prog Technol 12:159–170

    Article  PubMed  CAS  Google Scholar 

  • Klein JD (1987) Relationship of harvest date, storage conditions, and fruit characteristics to bruise susceptibility of apple. J Am Soc Hort Sci 112:113–118

    CAS  Google Scholar 

  • Lackermeier AH, McAdams ET, Moss GP, Woolfson AD (1999) In vivo ac impedance spectroscopy of human skin: theory and problems in monitoring of passive percutaneous drug delivery. Ann N Y Acad Sci 873:197–213

    Article  PubMed  CAS  Google Scholar 

  • Levitt J (1981) Responses of plants to environmental stresses. Water, radiation, salt, and other stresses. In: Kozlowski TT (ed) Physiological ecology, vol 2. Academic Press, Toronto, pp 28–53

    Google Scholar 

  • Lewis GS, Aizinbud E, Leherer AR (1989) Changes in electrical resistance of vulvar tissue in Holstein cows during ovarian cycles and after treatment with prostaglandin F2α. Anim Reprod Sci 18:183–197

    Article  CAS  Google Scholar 

  • Liedtke RJ (1997) Principles of bioelectrical impedance analysis. RJL Systems Inc., Clinton 10

    Google Scholar 

  • Lougheed EC, Miller SR, Miller BD, Cline R (1981) Electrical impedance of diaminozide and calcium-trated mcIntosh apples. Experimentia 37:835–837

    Article  CAS  Google Scholar 

  • Luoranen J, Tapani R, Lappi J (2004) Assessment of the frost hardiness of shoots of silver birch (Betula pendula) seedlings with and without controlled exposure to freezing. Can J For Res 34:1108–1118

    Article  Google Scholar 

  • Macdonald JR (1987) Impedance spectroscopy. Emphasizing solid materials and systems. John Wiley and Sons, New York

    Google Scholar 

  • Macdonald JR (1992) Impedance spectroscopy. Ann Biomed Eng 20:289–305

    Article  PubMed  CAS  Google Scholar 

  • Macdonald JR, Garber JA (1977) Analysis of impedance and admittance data for solids and liquids. J Electroch Soc 124:1022–1030

    Article  CAS  Google Scholar 

  • Mancuso S (2000) Electrical resistance changes during exposure to low temperature and freezing measure chilling tolerance in olive tree (Olea europaea L.) plants. Plant, Cell Environ 23:291–299

    Article  Google Scholar 

  • Mancuso S, Azzarello E (2002) Heat tolerance in olive. Adv Hort Sci 16:125–130

    Google Scholar 

  • Mancuso S, Rinaldelli E (1996) Response of young mycorrhizal and non-mycorrhizal plants of Olive tree (Olea europea L.) to saline conditions. II. dynamics of electrical impedance parameters of shoots and leaves. Adv Hort Sci 10:135–145

    Google Scholar 

  • Mancuso S, Nicese FP, Masi E, Azzarello E (2004) Comparing fractal analysis, electrical impedance and electrolyte leakage for the assessment of the freezing tolerance in Callistemon and Grevillea spp. J Hort Sci Biotech 79:627–632

    Google Scholar 

  • Martinez FS (2007) Electrical bioimpedance cerebral monitoring: fundamental steps towards clinical application, thesis for the degree of doctor of philosophy. School of Engineering, University College of BorÃ¥s, Sweden. Printed by Chalmers Reproservice Göteborg, Sweden

    Google Scholar 

  • Matsumoto N, Homma T, Morita S, Abe J (2001) Capacitance as a possible indicator for size of maize root system. In: Proceedings of the 6th symposium of the international society of root research, Nagoya, Japan, pp 578–579

    Google Scholar 

  • Ozier-Lafontaine H, Bajazet T (2005) Analysis of root growth by impedance spectroscopy (EIS). Plant Soil 277:299–313

    Article  CAS  Google Scholar 

  • Ozier-Lafontaine H, Bajazet T, Cabidoche YM (2001) Electrical capacitance as a tool for non- invasive root size estimation: minimizing soil and electrodes influences. In: Proceedings of the 6th symposium of the international society of root research, Nagoya, Japan, pp 190–191

    Google Scholar 

  • Paine DH, Repo T, Taylor AG (2001) Noninvasive seed quality test by impedance spectrum analysis. Reprinted Seed Technol 23:187–192

    Google Scholar 

  • Palta JP, Weiss LS (1993) Ice formation and freezing injury: an overview on the survival mechanisms and molecular aspects of injury and cold acclimation in herbaceous plants. In: Li PH, Christersson L (eds) advances in plant cold hardiness. CRC Press, Inc., Boca Raton, pp 143–176

    Google Scholar 

  • Pänke O, Balkenhohl T, Kafka J, Schäfer D, Lisdat F (2008) Impedance spectroscopy and biosensing. Adv Biochem Eng Biotechnol 109:195–237

    PubMed  Google Scholar 

  • Priestley DA (1986) Seed aging. Cornell University Press, New York

    Google Scholar 

  • Rajkai K, Végh KR, Nacsa T (2002) Electrical capacitance as the indicator of root size and activity. Agrokémia és Talajtan 51:1–10

    Article  Google Scholar 

  • Repo T (1994) Influence of different electrodes and tissues on the impedance spectra of scots pine shoots. Electro Magnetobiol 13:1–14

    Google Scholar 

  • Repo T, Pulli S (1996) Application of impedance spectroscopy for selecting frost hardy varieties of english ryegrass. Ann Bot 78:605–609

    Article  Google Scholar 

  • Repo T, Zhang MIN (1993) Modelling woody plant tissues using a distributed electrical circuits. J Exp Bot 44:977–992

    Article  Google Scholar 

  • Repo T, Zhang MIN, Ryyppö A, Vapaavuori E, Sutinen S (1994) Effects of freeze-thaw injury on parameters of distributed electrical circuits of stems and needles of scots pine seedlings at different stages of acclimation. J Exp Bot 45:557–565

    Article  Google Scholar 

  • Repo T, Zhang G, Ryyppö A, Rikala R (2000) The electrical impedance spectroscopy of Scots pine (Pinus sylvestris L.) shoots in relation to cold acclimation. J Exp Bot 51(353):2095–2107

    Article  PubMed  CAS  Google Scholar 

  • Repo T, Paine D, Taylor A (2002) Electrical impedance spectroscopy in relation to seed viability and moisture content in snap bean (Phaseolus vulgaris L.). Seed Sci Res 12:17–29

    Article  Google Scholar 

  • Repo T, Laukkanen J, Silvennoinen R (2005) Measurement of the tree root growth using electrical impedance spectroscopy. Silv Fenn 39:159–166

    Google Scholar 

  • Ryyppö A, Repo T, Vapaavuori E (1998) Development of freezing tolerance in roots and shoots of Scots pine seedlings at non freezing temperatures. Can J For Res 51:2095–2107

    Google Scholar 

  • Schoorl D, Holt JE (1977) The effects of storage time and temperature on the bruising of Jonathan, delicious and granny Smith apples. J Text Stud 8:409–416

    Article  Google Scholar 

  • Schröder J, Doerner S, Schneider T, Hauptmann P (2004) Analogue and digital sensor interfaces for impedance spectroscopy. Meas Sci Technol 15:1271–1278

    Article  Google Scholar 

  • Shabala SN, Newman IA (1997) H+ flux kinetics around plant roots after short-term exposure to low temperature: identifying critical temperatures for plant chilling tolerance. Plant, Cell Environ 10:1401–1410

    Article  Google Scholar 

  • Steponkus PL (1984) Role of the plasma membrane in freezing injury and cold acclimation. Ann Rev Plant Physiol Plant Mol Biol 35:543–584

    Article  CAS  Google Scholar 

  • Sugiyama J, Hayashi T, Horiuchi H (1987) Electrical impedance of kiwifruit. Nippon Shokuhin Kogyo Gakkaishi 33:725–730

    Article  Google Scholar 

  • Tsarouhas WA, Kenney L, Zsuffa LZ (2000) Application of two electrical methods for the rapid assessment of freezing resistance in Salix eriocephala. Biom Bioener 19(3):165–175

    Article  Google Scholar 

  • Väinölä A, Repo T (2000) Impedance spectroscopy in frost hardiness evaluation of Rhododendron leaves. Ann Bot 86:799–805

    Article  Google Scholar 

  • van Beem J, Smith ME, Zobel RW (1998) Estimating root mass in maize using a portable capacitance meter. Agron J 90:566–570

    Article  Google Scholar 

  • Varlan AR, Sansen W (1996) Nondestructive electrical impedance analysis in fruit: normal ripening and injuries characterization. Electro Magnetobiol 15:213–227

    Google Scholar 

  • von Mollendorff LJ, Jacobs G, de Villiers OT (1992) Cold storage influences internal characteristics of nectarines during ripening. HortSci 27:1295–1297

    Google Scholar 

  • Weaver GM, Jackson HO (1966) Electric impedance, an objective index of maturity in peach. Can J Plant Sci 46:323–326

    Article  Google Scholar 

  • Yoshida S (1991) Chilling-induced inactivation and its recovery of tonoplast H + -ATPase in mung bean cell suspension cultures. Plant Physiol 95:456–460

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S (1994) Low temperatures-induced cytoplasmic acidosis in cultured mung bean (Vigna radiata (L.) Wilczek) cells. Plant Physiol 104:1131–1138

    PubMed  CAS  Google Scholar 

  • Zachariah G (1976) Electrical properties of fruits and vegetables for quality evaluation. In: Gaffney JJ (ed) Quality detection in foods. American Society of Agricultural Engineers, St Joseph, pp 98–101

    Google Scholar 

  • Zhang MIN, Willison JHM (1991) Electrical impedance analysis in plant tissues: a double shell model. J Exp Bot 42:1465–1475

    Article  Google Scholar 

  • Zhang MIN, Willison JHM (1992) Electrical impedance analysis in plant tissues: the effect of freeze-thaw injury on the electrical properties of potato tuber and carrot root tissues. Can J Plant Sci 72:545–553

    Article  Google Scholar 

  • Zhang MIN, Willison JHM (1993) Electrical impedance analysis in plant tissues: impedance measurement in leaves. J Exp Bot 44:1369–1375

    Article  Google Scholar 

  • Zhang MIN, Stout DG, Willison JHM (1990) Electrical impedance analysis in plant tissues: symplasmic resistance and membrane capacitance in the hayden model. J Exp Bot 41:371–380

    Article  Google Scholar 

  • Zhang MIN, Stout DG, Willison JHM (1992) Plant tissue impedance and cold acclimation: a re-analysis. J Exp Bot 43:263–266

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mancuso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Azzarello, E., Masi, E., Mancuso, S. (2012). Electrochemical Impedance Spectroscopy. In: Volkov, A. (eds) Plant Electrophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29119-7_9

Download citation

Publish with us

Policies and ethics