Skip to main content

Multielectrode Array: A New Approach to Plant Electrophysiology

  • Chapter
  • First Online:

Abstract

A number of recent technical advances allowed the ideation of the multielectrode array (MEA) technology, a valuable tool to record electrical activity with high information content both in the spatial and temporal dimensions. Microfabricated arrays, recording hardware and software for data acquisition and analysis, are now commercially available and enable continuous, stable recordings. Here, the MEA system and the different arrays available are reviewed with regard to their intrinsic characteristics and performances. Some interesting applications of the MEA approach in plants and in combination with other techniques (e.g. imaging) are mentioned. Due to the emerging demand for novel electrophysiological methods that allows automated recording from cells and tissues, it is expected that the MEA technology will become a widely accepted and used tool in the field of plant electrophysiology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

MEA:

Multielectrode array

PBC:

Printed board circuit

S/N:

Signal-to-noise

Au:

Gold

Pt:

Platinum

TiN:

Titanium nitride

ITO:

Indium tin-doped oxide

IED:

Interelectrode distance

pMEA:

Perforated MEA

PGP:

Perfusion ground plate

FlexMEA:

Flexible MEA

3D MEA:

3D MEA

HD-MEA:

High-density MEA

CMOS:

Complementary metal–oxide–semiconductor

LAPS:

Light addressable potentiometric sensors

AP:

Action potential

VP:

Variation potential

References

  • Berdondini L, van der Wal PD, Guenat O, de Rooij NF, Koudelka-Hep M, Seitz P, Kaufmann R, Metzler P, Blanc N, Rohr S (2004) High-density electrode array for imaging in vitro electrophysiological activity. Biosens Bioelectron 21:167–174

    Article  Google Scholar 

  • Boppart SA, Wheeler BC, Wallace CS (1992) A flexible perforated microelectrode array for extended neural recordings. IEEE Trans Biomed Eng 39:37–42

    Article  PubMed  CAS  Google Scholar 

  • Bucher V, Brunner B, Leibrock C, Schubert M, Nisch W (2001) Electrical properties of a light-addressable microelectrode chip with high electrode density for extracellular stimulation and recording of excitable cells. Biosens Bioelectron 16(3):205–210

    Article  PubMed  CAS  Google Scholar 

  • Egert U, Knott T, Schwarz C, Nawrot M, Brandt A, Rotter S, Diesmann M (2002) MEA-tools: an open source toolbox for the analysis of multi-electrode data with MATLAB. J Neurosci Methods 117:33–42

    Article  PubMed  CAS  Google Scholar 

  • Egert U, Schlosshauer B, Fennrich S, Nisch W, Fejtl M, Knott Th, Müller T, Hämmerle H (1998) A novel organotypic long-term culture of the rat hippocampus on substrate-integrated multielectrode arrays. Brain Res Protoc 2:229–242

    Article  CAS  Google Scholar 

  • Eversmann B, Jenkner M, Hofmann F, Paulus C, Brederlow R, Holzapfl B, Fromherz P, Merz M, Brenner M, Schreiter M, Gabl R, Plehnert K, Steinhauser M, Eckstein G, Schmitt-Landsiedel D, Thewes R (2003) A 128 × 128 CMOS biosensor array for extracellular recording of neural activity. IEEE J Solid-State Circuits 38(12):2306–2317

    Article  Google Scholar 

  • Eytan D, Minerbi A, Ziv NE, Marom S (2004) Dopamine-induced dispersion of correlations between action potentials in networks of cortical neurons. J Neurophysiol 92(3):1817–1824

    Article  PubMed  CAS  Google Scholar 

  • Fejtl M, Stett A, Nisch W, Boven K-H, Möller A (2006) On micro-electrode array revival: its development, sophistication of recording, and stimulation. In: Taketani M, Baudry M (eds) Advances in network electrophysiology. Springer, Berlin

    Google Scholar 

  • Flickinger B, Berghofer T, Eing C, Gusbeth C, Strassner R, Frey W (2010) Transmembranepotential, easurements on plant cells using the voltage sensitive dye annine-6. Protoplasma 247:3–12

    Article  PubMed  Google Scholar 

  • Frey U, Egert U, Heer F, Hafizovic S, Hierlemann A (2009) Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices. Biosens Bioelectron 24:2191–2198

    Article  PubMed  CAS  Google Scholar 

  • Fromherz P (2003) Neuroelectronic interfacing: semiconductor chips with ion channels, nerve cells, and brain. In: Waser J, Verlag W-VCH (eds) Nanoelectronics and information technology. Wiley VCH Publishing, Berlin

    Google Scholar 

  • Gross GW (1979) Simultaneous single unit recording in vitro with a photoetched laser deinsulated gold multimicroelectrode surface. IEEE Trans Biomed Eng 26:273–279

    Article  PubMed  CAS  Google Scholar 

  • Gross GW, Rhoades BK, Reust DL, Schwahn FU (1993) Stimulation of monolayer networks in culture through thin-fihn indium-tin oxide recording electrodes. J Neurosci Methods 50(2):131–143

    Article  PubMed  CAS  Google Scholar 

  • Halbach MD, Egert U, Hescheler J, Banach K (2003) Estimation of action potential changes from field potential recordings in multi-cellular mouse cardiac myocyte cultures. Cell Physiol Biochem 13:271–284

    Article  PubMed  CAS  Google Scholar 

  • Heusckel MO, Fejl M, Raggenbass M, Bertrand D, Renaud P (2002) A three dimensional multi-electrode array for multi-site stimulation and recording in acute brain slices. J Neurosci Methods 114:135–148

    Article  Google Scholar 

  • Johnston D, Wu MS (1995) Extracellular field recordings. In: foundations of cellular neurophysiology. MIT Press, Cambridge, MA

    Google Scholar 

  • Kandler S, OkujeniS, Reinartz S, Egert U (2010) Networks in dissociated culture follow native corticaldevelopment. In: Stett A (ed) Proceedings MEA meeting 2010, Stuttgart: BIOPRO Baden-Württemberg GmbH 2010, pp 44–45

    Google Scholar 

  • Kerr JND, Denk W (2008) Imaging in vivo: watching the brain in action. Nat Rev Neurosci 9:195–203

    Article  Google Scholar 

  • Kovacs G (1994) Introduction to the theory, design and modeling of thin-film microelectrodes for neural interfaces. In: Stenger DA, McKenna T (eds) Enabling technologies for cultured neural networks. Academic, San Diego

    Google Scholar 

  • Marrese CA (1987) Preparation of strongly adherent platinum black coatings. Anal Chem 59:217–218

    Article  CAS  Google Scholar 

  • Mancuso S (1999) Hydraulic and electrical transmission of wound-induced signals in Vitis vinifera. Aust J Plant Physiol 26:55–61

    Article  Google Scholar 

  • Masi E, Ciszak M, Stefano G, Renna L, Azzarello E, Pandolfi C, Mugnai S, Baluska F, Arecchi T, Mancuso S (2009) Spatiotemporal dynamics of the electrical network activity in the root apex. PNAS 106:4048–4053

    Article  PubMed  CAS  Google Scholar 

  • Molina-Luna K, Buitrago MM, Hertler B, Schubring M, Haiss F, Nisch W, Schulz JB, Luft AR (2007) Cortical stimulation mapping using epidurally implanted thin-film microelectrode arrays. J Neurosci Methods 161(1):118–125

    Article  PubMed  Google Scholar 

  • Pine J (1980) Recording action potentials from cultured neurons with extracellular microcircuit electrodes. J Neunxci Methods 2:19–31

    Article  CAS  Google Scholar 

  • Potter SM (2001) Distributed processing in cultured neuronal networks. Prog Brain Res 130:49–62

    Article  PubMed  CAS  Google Scholar 

  • Regehr WG, Pine J, Cohan CS, Mischke MD, Tank DW (1989) Sealing cultured invertebrate neurons to embedded dish electrodes facilitates long-term stimulation and recording. J Neurosci Methods 30(2):91–106

    Article  PubMed  CAS  Google Scholar 

  • Stett A, Barth W, Weiss S, Haemmerle H, Zrenner E (2000) Electrical multisite stimulation of the isolated chicken retina. Vis Res 40:1785–1795

    Article  PubMed  CAS  Google Scholar 

  • Stett A, Egert U, Guenther E, Hofmann F, Meyer T, Nisch W, Haemmerle H (2003) Biological application of microelectrode arrays in drug discovery and basic research. Anal Bioanal Chem 377:486–495

    Article  PubMed  CAS  Google Scholar 

  • Takayama Y, Moriguchi H, Jimbo Y (2008) Site-selective stimulation and recording of the electrical activity of cultured neuronal networks using mobile microelectrodes. In: Proceedings of the international symposium on biological and physiological engineering, pp 159–162

    Google Scholar 

  • Thomas CA, Springer PA, Loeb GE, Berwald-Netter Y, Okun LM (1972) A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Exp Cell Res 74:61–66

    Article  PubMed  Google Scholar 

  • Tsay C, Lacour SP, Wagner S, Morrison III B (2005) Architecture, fabrication, and properties of stretchable microelectrode arrays. In: Proceedings of the 4th IEEE conference on sensors, pp 1169–1172

    Google Scholar 

  • Volkov AG (2006) Plant electrophysiology: theory and methods. Springer, Berlin

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Mancuso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Masi, E., Azzarello, E., Mancuso, S. (2012). Multielectrode Array: A New Approach to Plant Electrophysiology. In: Volkov, A. (eds) Plant Electrophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29119-7_8

Download citation

Publish with us

Policies and ethics