Skip to main content

At the Roots of Plant Neurobiology

  • Chapter
  • First Online:
Book cover Plant Electrophysiology

Abstract

If biology throughout the nineteenth and twentieth centuries was dominated by the metaphor of the machine, the metaphor underlying twenty first century biology is that of the network or web. A rapid proliferation of molecular data coupled with increased computational power has revealed that gene regulation, protein interaction, the topology of metabolism and signal-transduction in and between cells, tissues, organs and organisms can all be described as robust, resilient and modular networks. Such small-world networks are characterised by rapid signal propagation, a capacity for computation and for synchronisation between the same, or different, hierarchic levels. Organelles, cells, tissues, organisms and ecosystems are not mere aggregations of components, but are hierarchies of interacting systems or modules, each possessing a degree of autonomy, and each a degree of interdependence. Into this metaphor of the network has emerged the discipline of integrative plant electrophysiology, called by its adherents, plant neurobiology. This field aims to understand how plants perceive, recall and process experience, coordinating behavioural responses via integrated information networks that include molecular, chemical and electrical levels of signalling. Integrative plant electrophysiology rejects the long standing view of plants as passive insensate automata that react to the environment with mechanical simplicity. The controversial use of the word ‘neurobiology’ as applied to plants signifies that long-distance electrical signals, such as action potentials, convey meaningful information from the site of initiation to a distant site, where the signal is interpreted and evaluated, and an adaptive behavioural response is mounted. Such inter-module communication is ‘nervous’ in the sense that it is adaptive, thereby implying capacities for memory, learning, anticipating the future and for generating novel responses. By itself a touch stimulus is meaningless, and by itself a behaviour (e.g. Mimosa leaf folding) is meaningless. Meaning lies in the network of processes that associate and integrate these events. Communication processes within, and between plants and associated organisms, can therefore be considered as biosemiotic, involving as they do the interpretation and evaluation of stimuli. This review traces historical aspects of the development of integrative plant electrophysiology and the methods that inform it, with a special emphasis on the work of Indian biophysicist Sir J. C. Bose (1858–1937), who, in an impressive body of published research, proposed that plants and animals share essentially similar fundamental physiological mechanisms. The first scientist to appreciate that responses in plants (e.g. leaf folding in the sensitive plant Mimosa) constitute behaviour reliant on integrative electrical signals; Bose argued further that all plants co-ordinate their movements and integrate their responses to the world through electrical signalling. Despite their sessile habits, plants are to be regarded as sensate, active, intelligent explorers of the world. Bose identified a fundamental physiological motif that interlinked measurable pulsations or oscillations in cellular electric potentials with oscillations in cell turgor pressure, cellular contractility and growth. All plants respond to the world and to other living things through adaptations of this pulsatile motif, an electromechanical pulse that underlies electro-osmotically enacted behaviour. J.C. Bose’s conclusions that all plants possess a nervous system, a form of intelligence, and a capacity for remembering and learning, were poorly received by prominent electrophysiologists of his time. Experiments devoted to plant responsiveness, inter-organism communication, kin-recognition, foraging, intelligence and learning as mediated by electrical signalling, are now published and debated in the mainstream literature as aspects of integrative plant electrophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agutter PS, Malone PL, Wheatley DN (2000) Diffusion theory: a relic of mechanistic materialism. J Hist Biol 33:71–111

    Article  PubMed  CAS  Google Scholar 

  • Albert R (2005) Scale-free networks in cell biology. J Cell Sci 118:4947–4957

    Article  PubMed  CAS  Google Scholar 

  • Alpi A et al (2007) Plant neurobiology: no brain no gain. Trends Plant Sci 12:135–136

    Article  PubMed  CAS  Google Scholar 

  • Antkowiak B, Engelmann W (1995) Oscillations of apoplasmic K+ and H+ activities in Desmodium motorium (Hout) Merril. pulvini in relation to the membrane potential of motor cells and leaflet movements. Planta 196:350–356

    Article  CAS  Google Scholar 

  • Antkowiak B, Mayer WE, Engelmann W (1991) Oscillations of the membrane potential of pulvinar motor cells in situ in relation to leaflet movements of Desmodium motorium. J Exp Bot 42:901–910

    Article  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  PubMed  CAS  Google Scholar 

  • Ballare CL (2009) Illuminated behaviour: Phytochrome as a key regulator of light foraging and plant anti-herbivore defence. Plant, Cell Environ 32:713–725

    Article  CAS  Google Scholar 

  • Ballare CL, Trewavas AJ (2009) Plant behaviour, special issue introduction. Plant, Cell Environ 32:605

    Article  CAS  Google Scholar 

  • Baluska F, Mancuso S (2007) Plant neurobiology as a paradigm shift not only in the plant sciences. Plant Sign Behav 2:205–207

    Article  Google Scholar 

  • Baluska F, Samaj J, Wojtaszek P, Volkmann D, Menzel D (2003a) Cytoskeleton-plasma membrane-cell wall continuum in plants: emerging links revisited. Plant Physiol 133:482–491

    Article  PubMed  CAS  Google Scholar 

  • Baluska F, Samaj J, Menzel D (2003b) Polar transport of auxin: carrier-mediated flux across the plasma membrane or neurotransmitter-like secretion? Trends Cell Biol 13:282–285

    Article  PubMed  CAS  Google Scholar 

  • Baluska F, Mancuso S, Volkmann D, Barlow PW (2004) Root apices as plant command centres: the unique ‘brain-like’ status of the root apex transition zone. Biologia, Bratislava 59(Suppl. 13):1–13

    Google Scholar 

  • Baluska F, Volkmann D, Menzel D (2005) Plant synapses: actin-based adhesion domains for cell-to-cell communication. Trends Plant Sci 10:106–111

    Article  PubMed  CAS  Google Scholar 

  • Baluska F, Volkmann D, Hlavacka A, Mancuso S, Barlow PW (2006) Neurobiological view of plants and their body plan. In: Baluska F, Mancuso S, Volkmann D (eds) Communication in plants: Neuronal aspects of plant life. Springer, Berlin, pp 19–35

    Google Scholar 

  • Barlow PW (2006) Charles Darwin and the plant root apex: closing a gap in living systems theory as applied to plants. In: Baluska F, Mancuso S, Volkmann D (eds) Communication in plants: neuronal aspects of plant life. Springer, Berlin, pp 37–51

    Google Scholar 

  • Barlow PW (2008) Reflections on plant neurobiology. Biosystems 92:132–147

    Article  PubMed  Google Scholar 

  • Barlow PW (2010a) Plant roots: autopoietic and cognitive constructions. Plant Root 4:40–52

    Article  Google Scholar 

  • Barlow PW (2010b) Plastic, inquisitive roots and intelligent plants in the light of some new vistas in plant biology. Plant Biosyst 144:396–407

    Google Scholar 

  • Becker RO, Marino AA (1982) Electromagnetism of life. State University of New York Press, Albany

    Google Scholar 

  • Bond DM, Finnegan EJ (2007) Passing the message on: inheritance of epigenetic traits. Trends Plant Sci 12:211–216

    Article  PubMed  CAS  Google Scholar 

  • Bondyopadhyay PK (1998) Sir J.C. Boses’s diode detector received Marconi’s first transatlantic wireless signal of December 1901 (The “Italian Navy Coherer” Scandal Revisited). Proc IEEE 86:259–285

    Article  Google Scholar 

  • Bose JC (1902) Response in the living and non-living. Longmans, Green and Co, London

    Google Scholar 

  • Bose JC (1904) Patent for Detector for Electrical Disturbances. reprinted in Trans IEEE 1998 86: 230–234

    Google Scholar 

  • Bose JC (1913) Researches on irritability of plants. Longmans, Green and Co, London

    Book  Google Scholar 

  • Bose JC (1917) The voice of life. In: Acharya JC (ed) Bose: The scientific legacy, Bose Inst Kolkata 2004, pp 1-11

    Google Scholar 

  • Bose JC (1918) Life movements in plants. Trans Bose Res Inst Calcutta, Bengal Government Press, Calcutta

    Google Scholar 

  • Bose JC (1923) The physiology of the ascent of sap. Longmans, Green and Co, London

    Google Scholar 

  • Bose JC (1926) The nervous mechanisms of plants. Longmans, Green and Co, London

    Google Scholar 

  • Bose I, Karmakar R (2003) Simple models of plant learning and memory. Phys Script T106:9–12

    Article  CAS  Google Scholar 

  • Bothwell JHF, Ng CY-K (2005) The evolution of Ca2+ signalling in photosynthetic eucaryotes. New Phytol 166:21–38

    Article  PubMed  CAS  Google Scholar 

  • Boyko A, Kovalchuk I (2010) Transgenerational response to stress in Arabidopsis. Plant Signal Behav 5:995–998

    Article  PubMed  CAS  Google Scholar 

  • Brenner E, Stahlberg R, Mancuso S, Vivanco J, Baluska F, van Volkenburgh E (2006) Plant neurobiology: an integrated view of plant signalling. Trends Plant Sci 11:413–419

    Article  PubMed  CAS  Google Scholar 

  • Calvo Garzon P, Keijzer F (2011) Plants: Adaptive behaviour, root-brains, and minimal cognition. Adapt Behav 19:155–171

    Article  Google Scholar 

  • Chakrabarti P (2004) Western science in modern India: metropolitan methods, colonial practices. Orient, Longman Ltd, India

    Google Scholar 

  • Cvrckova F, Lipavska H, Zarsky V (2009) Plant Intelligence: why, why not or where? Plant Signal Behav 4:394–399

    Article  PubMed  CAS  Google Scholar 

  • Dasgupta S (1998) Jagadis Bose, Augustus Waller and the discovery of ‘vegetable electricity’. Notes Rec Roy Soc Lond 52:307–322

    Article  Google Scholar 

  • Davies E (1987a) Action potentials as multifunctional signals in plants: a unifying hypothesis to explain apparently disparate wound responses. Plant, Cell Environ 10:623–631

    Article  Google Scholar 

  • Davies E (1987b) Plant responses to wounding. In: Stumpf PK, Conn EE (eds) The biochemistry of plants, vol 12. Academic, New York, pp 243–264

    Google Scholar 

  • Davies E (2004) New functions for electrical signals in plants. New Phytol 161:607–610

    Article  Google Scholar 

  • Davies E (2006) Electrical signals in plants: facts and hypotheses. In: Volkov AG (ed) Plant electrophysiology-theory and methods. Springer, Berlin, pp 407–422

    Chapter  Google Scholar 

  • Davies E, Stankovic B (2006) Electrical signals, the cytoskeleton, and gene expression: a hypothesis on the coherence of the cellular responses to environmental insult. In: Baluska F, Mancuso S, Volkmann D (eds) Communication in plants—neuronal aspects of plant life. Springer-Verlag, Berlin, pp 309–320

    Google Scholar 

  • de Kroon H, Visser EJW, Huber H, Mommer L, Hutchings MJ (2009) A modular concept of plant foraging behaviour: the interplay between local responses and systemic control. Plant, Cell Environ 32:704–712

    Article  CAS  Google Scholar 

  • Dicke M (2009) Behavioural and community ecology of plants that cry for help. Plant, Cell Environ 32:654–665

    Article  CAS  Google Scholar 

  • Drack M, Apfalter W, Pouvreau D (2007) On the making of a system theory of life: Paul A. Weiss and Ludwig von Bertalanffy’s conceptual connection. Q Rev Biol 82:349–373

    Article  PubMed  Google Scholar 

  • Dudley SA, File AL (2007) Kin recognition in an annual plant. Biol Lett 3:435–438

    Article  PubMed  Google Scholar 

  • Dudley SA, File AL (2008) Yes, kin recognition in an annual plant! Biol Lett 4:69–70

    Article  Google Scholar 

  • Ellingsrud S, Johnsson A (1993) Perturbations of plant leaflet rhythms caused by electromagnetic radio-frequency radiation. Bioelectromag 14:257–271

    Article  CAS  Google Scholar 

  • Emerson DT (1997) Jagadis Chandra Bose: millimetre wave research in the nineteenth century. IEEE Trans Microwave Theory Tech 45:2267–2273

    Article  Google Scholar 

  • Engineer M (2009) The millimetre wave researches of J.C. Bose. In: Sen Gupta DP, Engineer MH, Shepherd VA (eds) Remembering Sir J.C. Bose. IISc Press, World Scientific, New Jersey, London, Singapore, Beijing, Shanghai, Hong Kong, Taipai, Chennai

    Google Scholar 

  • Ettlinger C, Lehle L (1988) Auxin induces rapid changes in phosphatidylinositol metabolites. Nature 331:176–178

    Article  PubMed  CAS  Google Scholar 

  • Fromm J, Eschrich W (1998a) Transport processes in stimulated and non-stimulated leaves of Mimosa pudica. I. The movement of 14C-labelled assimilates. Trees 2:7–17

    Google Scholar 

  • Fromm J, Eschrich W (1998b) Transport processes in stimulated and non-stimulated leaves of Mimosa pudica. II. Energesis and transmission of seismic stimulations. Trees 2:18–24

    Google Scholar 

  • Fromm J, Eschrich W (1998c) Transport processes in stimulated and non-stimulated leaves of Mimosa pudica. III. Displacement of ions during seismonastic leaf movements. Trees 2:65–72

    Google Scholar 

  • Fromm J, Fei H (1998) Electrical signaling and gas exchange in maize plants of drying soil. Plant Sci 132:203–213

    Article  CAS  Google Scholar 

  • Fromm J, Lautner S (2007) Electric signals and their physiological significance in plants. Plant, Cell Environ 30:249–257

    Article  CAS  Google Scholar 

  • Frommer W (2010) Grand opportunities in physiology to address the grand challenges facing the planet. Front Physiol 1:1–3

    Article  Google Scholar 

  • Galston AW, Slayman CL (1979) The not-so-secret life of plants. Am Sci 67:337–344

    Google Scholar 

  • Garnier S, Gautrais J, Theraulaz G (2007) The biological principals of swarm intelligence. Swarm Intell 1:3–31

    Article  Google Scholar 

  • Geddes P (1920) The life and work of Sir Jagadis C. Bose. An Indian pioneer of science. Longmans and Green, London

    Book  Google Scholar 

  • Gensler W, Diaz-Munoz F (1983) Simultaneous stem diameter expansions and apoplastic electropotential variations following irrigation or rainfall in cotton. Crop Sci 23:920–923

    Article  Google Scholar 

  • Gensler W, Yan T-L (1998) Investigation of the causative reactant of the apoplast electropotentials of plants. J Electrochem Soc Electrochem Sci Tech 135:2991–2995

    Google Scholar 

  • Haberlandt G (1928) Physiological plant anatomy. MacMillan and Co, London

    Google Scholar 

  • Haldane JS (1912) Burdon-Sanderson and vitalism. Nature 89:215–216

    Article  Google Scholar 

  • Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402:C47–C52

    Article  PubMed  CAS  Google Scholar 

  • Hedrich R, Schroeder JI (1989) The physiology of ion channels and electrogenic pumps in higher plants. Ann Rev Plant Physiol Plant Mol Biol 40:539–569

    Article  Google Scholar 

  • Hilker M, Kobs C, Varama M, Schrank K (2002) Insect egg deposition induces Pinus sylvestris to attract egg parasitoids. J Exp Bot 205:455–461

    Google Scholar 

  • Hill BS, Findlay GP (1981) The power of movement in plants: the role of osmotic machines. Q Rev Biophys 14:173–222

    Article  PubMed  CAS  Google Scholar 

  • Holzknecht K, Zurcher E (2006) Tree stems and tides- a new approach and elements of reflexion. Schweiz Z Forstwes 157:185–190

    Article  Google Scholar 

  • Hope AB, Walker NA (1975) The physiology of giant algal cells. Cambridge University Press, London

    Google Scholar 

  • Jorgensen RA (2011) Epigenetics: biology’s quantum mechanics. Front Plant Sci 2:1–4

    Article  Google Scholar 

  • Karban R (2008) Plant behaviour and communication. Ecol Lett 11:727–739

    Article  PubMed  Google Scholar 

  • Kauffman S, Logan RK, Este R, Goebel R, Hobill D, Shmulevich I (2008) Propagating organization: an enquiry. Biol Philos 23:27–45

    Article  Google Scholar 

  • Keller EF (1983) A feeling for the organism: the life and work of Barbara McClintock. WH Freeman and Co, New York

    Google Scholar 

  • Koestler A (1978) The ghost in the machine. Pan Books, London

    Google Scholar 

  • Koziolek C, Grams TEE, Schreiber U, Matyssek R, Fromm J (2004) Transient knockout of photosynthesis mediated by electrical signals. New Phytol 161:715–722

    Article  CAS  Google Scholar 

  • Laschimke R, Burger M, Vallen H (2006) Acoustic emission analysis and experiments with physical model systems reveal a peculiar nature of the xylem tension. J Plant Physiol 163:996–1007

    Article  PubMed  CAS  Google Scholar 

  • Mancuso S (1999) Hydraulic and electrical transmission of wound-induced signals in Vitis vinifera. Aust J Plant Physiol 26:55–61

    Article  Google Scholar 

  • Masi E, Ciszak M, Stefano G, Renna L, Azzarello E, Pandolfi C, Mugnai S, Baluska F, Arecchi FT, Mancuso S (2009) Spatiotemporal dynamics of the electrical network activity in the root apex. Proc Nat Acad Sci 106:4048–4053

    Article  PubMed  CAS  Google Scholar 

  • Massa GD, Gilroy S (2003) Touch modulates gravity sensing to regulate the growth of primary roots of Arabidopsis thaliana. Plant J 33:435–445

    Article  PubMed  Google Scholar 

  • McGary KL, Park TJ, Woods JO, Cha HJ, Wallingford JB, Marcotte EM (2010) Systematic discovery of nonobvious human disease models through orthologous phenotypes. Proc Nat Acad Sci 107:6544–6549

    Article  PubMed  CAS  Google Scholar 

  • McNickel GG, Cassady St Clair C, Cahill JF (2009) Focusing the metaphor: plant root foraging behaviour. Trends Ecol Evol 24:419–426

    Article  Google Scholar 

  • Mescher M, Runyon JB, De Moraes CM (2006) Plant host finding by parasitic plants. A new perspective on plant-to-plant communication. Plant Signal Behav 1:284–286

    Article  PubMed  Google Scholar 

  • Mitra AP (1997) J.C. Bose: at the dawn of radio science. Sci Cult 63:6–8

    Google Scholar 

  • Mitsuno T, Sibaoka T (1989) Rhythmic electrical potential change of motor pulvinus in lateral leaflet of Codariocalyx motorius. Plant Cell Physiol 30:1123–1127

    Google Scholar 

  • Molinier J, Ries G, Zipfel C, Hohn B (2006) Transgenerational memory of stress in plants. Nature 442:1046–1049

    Article  PubMed  CAS  Google Scholar 

  • Mott KA, Buckley TN (2000) Patchy stomatal conductance: emergent collective behaviour. Trends Plant Sci 5:258–262

    Article  PubMed  CAS  Google Scholar 

  • Nandy A (1995) Alternative sciences. Creativity and authenticity in two Indian scientists. Oxford University Press, Delhi

    Google Scholar 

  • Normann J, Vervleit-Scheebaum M, Albrechtova J, Wagner E (2007) Rhythmic stem extension growth and leaf movements as markers of plant behaviour: the integral output from endogenous and environmental signals. In: Mancuso S, Shabala S (eds) Rhythms in plants: phenomenology, mechanisms, and adaptive significance. Springer, Berlin, pp 200–217

    Google Scholar 

  • Novoplansky A (2009) Picking battles wisely: plant behaviour under competition. Plant, Cell Environ 32:726–741

    Article  Google Scholar 

  • Oda K (1976) Simultaneous recording of potassium and chloride efflux during an action potential in Chara corallina. Plant Cell Physiol 17:1085–1088

    CAS  Google Scholar 

  • Oda K, Linstead PJ (1975) Changes in cell length during action potentials in Chara. J Exp Bot 26:228–239

    Article  Google Scholar 

  • Peters R (1969) The problem of cytoplasmic integration. Proc Roy Soc Lond Ser B Biol Sci 173:11–19

    Article  CAS  Google Scholar 

  • Piccolino M (2006) Luigi Galvani’s path to animal electricity. CR Biologie 329:303–318

    Article  CAS  Google Scholar 

  • Pickard BG (1973) Action potentials in higher plants. Bot Rev 39:172–201

    Article  Google Scholar 

  • Ramaseshan S (1996) The centennial of the discovery of millimetre waves by Jagadis Chandra Bose (1858–1937). Curr Sci 70:172–175

    Google Scholar 

  • Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi A-L (2002) Hierarchial organization of modularity in metabolic networks. Science 297:1551–1555

    Article  PubMed  CAS  Google Scholar 

  • Riofrio W (2008) Understanding the emergence of cellular organisation. Biosemiotics 1:361–377

    Article  Google Scholar 

  • Roberts K (1992) Potential Awareness of Plants. Nature 360:14–15

    Article  Google Scholar 

  • Seeley TD, Levien RA (1987) A colony of mind. The beehive as thinking machine. Sciences 27:38–43

    Google Scholar 

  • Sen Gupta DP (2009) Jagadish Chandra Bose: the man and his time. In: Sen Gupta DP, Engineer MH, Shepherd VA (eds) Remembering sir J.C. Bose. IISc Press, WSPC Publications, New Jersey, London, Singapore

    Chapter  Google Scholar 

  • Sengupta D, Sarkar TK, Sen D (1998) Centennial of the semiconductor diode detector. Proc IEEE 86:235–243

    Article  Google Scholar 

  • Seyfarth CA (2006) Julius Bernstein (1839–1917): pioneer neurobiologist and biophysicist. Biol Cybernet 94:2–8

    Article  Google Scholar 

  • Shabala SN, Knowles A (2002) Rhythmic patterns of nutrient acquisition by wheat roots. Funct Plant Biol 29:595–605

    Article  CAS  Google Scholar 

  • Shepherd VA (1999) Bioelectricity and the rhythms of sensitive plants- the biophysical research of Jagadis Chandra Bose. Curr Sci 77:189–195

    Google Scholar 

  • Shepherd VA (2005) From semi-conductors to the rhythms of sensitive plants: the research of J.C Bose. Cell Mol Biol 51:607–619

    PubMed  CAS  Google Scholar 

  • Shepherd VA, Shimmen T, Beilby MJ (2001) Mechanosensory ion channels in Chara: the influence of cell turgor pressure on touch-activated receptor potentials and action potentials. Aust J Plant Physiol 28:551–566

    CAS  Google Scholar 

  • Shepherd VA, Beilby MJ, Shimmen T (2002) Mechanosensory ion channels in charophytes: the response to touch and to salinity stress. Eur Biophys J 31:341–355

    Article  PubMed  CAS  Google Scholar 

  • Shepherd VA, Beilby MJ, Al Khazaaly SAA, Shimmen T (2008) Mechanoperception in Chara cells: the influence of salinity and calcium on touch-activated receptor potentials, action potentials, and ion transport. Plant, Cell Environ 31:1575–1591

    Article  CAS  Google Scholar 

  • Shimmen T (2001) Involvement of receptor potentials and action potentials in mechano-perception in plants. Aust J Plant Physiol 28:567–576

    CAS  Google Scholar 

  • Shimmen T (2006) Electrophysiology of mechanosensing and wounding response. In: Volkov AG (ed) Plant electrophysiology-theory and methods. Springer, Berlin, pp 319–339

    Chapter  Google Scholar 

  • Sibaoka T (1969) Physiology of rapid movements in higher plants. Ann Rev Plant Physiol 20:165–184

    Article  CAS  Google Scholar 

  • Sibaoka T (1991) Rapid plant movements triggered by action potentials. Bot Mag Tokyo 104:73–95

    Article  Google Scholar 

  • Simons P (1992) The action plant. Movement and nervous behaviour in plants. Blackwell, Oxford, Cambridge

    Google Scholar 

  • Souda M, Toko K, Hayashi K, Fujiyoshi T, Ezaki S, Yamafuji K (1990) Relationship between growth and electric oscillations in bean roots. Plant Physiol 93:532–536

    Article  PubMed  CAS  Google Scholar 

  • Stahlberg R, Cosgrove DJ (1997) The propagation of slow wave potentials in pea epicotyls. Plant Physiol 113:209–217

    PubMed  CAS  Google Scholar 

  • Stanković B, Witters DL, Zawadzki T, Davies E (1998) Action potentials and variation potentials in sunflower: an analysis of their relationships and distinguishing characteristics. Physiol Plant 103:51–58

    Article  Google Scholar 

  • Strogatz SH (2001) Exploring complex networks. Nature 410:268–276

    Article  PubMed  CAS  Google Scholar 

  • Strogatz SH (2003) Sync: the emerging science of spontaneous order. Hyperion, USA

    Google Scholar 

  • Struik PC, Yin X, Meinke H (2008) Plant neurobiology and green plant intelligence: science, metaphors and nonsense. J Sci Food Agric 88:363–370

    Article  CAS  Google Scholar 

  • Tafforeau M, Verdus MC, Norris V, Ripoll C, Thellier M (2006) Memory processes in the response of plants to environmental signals. Plant Sign Behav 1:9–14

    Article  CAS  Google Scholar 

  • Telewski FW (2006) A unified hypothesis of mechanoperception in plants. Am J Bot 93:1466–1476

    Article  PubMed  Google Scholar 

  • Thellier M, Desbiez MO, Champagnat P, Kergosien Y (1982) Do memory processes occur in plants? Physiol Plant 56:281–284

    Article  Google Scholar 

  • Trewavas AJ, Malho R (1998) Ca2+ signalling in plant cells: the big network! Curr Opin Plant Biol 1:428–433

    Article  PubMed  CAS  Google Scholar 

  • Trewavas AJ (1999a) How plants learn. Proc Natl Acad Sci USA 96:4216–4218

    Article  PubMed  CAS  Google Scholar 

  • Trewavas AJ (1999b) Le calcium, c’est la vie: calcium makes waves. Plant Physiol 120:1–6

    Article  PubMed  CAS  Google Scholar 

  • Trewavas AJ (2003) Aspects of plant intelligence. Ann Bot 92:1–20

    Article  PubMed  CAS  Google Scholar 

  • Trewavas AJ (2005a) Plant intelligence. Naturwiss 92:401–403

    Article  PubMed  CAS  Google Scholar 

  • Trewavas AJ (2005b) The green plant as an intelligent organism. Trends Plant Sci 10:413–419

    Article  PubMed  CAS  Google Scholar 

  • Trewavas AJ (2006) The green plant as an intelligent organism. In: Baluska F, Mancuso S, Volkmann D (eds) Communication in plants: neuronal aspects of plant life. Springer, Berlin, pp 1–18

    Google Scholar 

  • Trewavas AJ (2009) What is plant behaviour? Plant, Cell Environ 32:606–616

    Article  Google Scholar 

  • Van den Driessche T (2000) Nutations in shoots and in Desmodium lateral leaflets, nyctinastism and seismonastism in Mimosa pudica. Comparison and evolution of morphology and mechanism. Biol Rhythm Res 31:451–468

    Article  Google Scholar 

  • Veit-Brause I (2002) The making of a modern scientific personae: the scientist as a moral person? Emil Du-Bois Reymond and his friends. Hist Hum Sci 15:19–49

    Article  Google Scholar 

  • Verkhratsky A, Krishtal OA, Petersen OH (2006) From Galvani to patch-clamp: the development of electrophysiology. Pflugers Arch Eur J Physiol 453:233–247

    Article  CAS  Google Scholar 

  • Vodeneev VA, Akinchits EK, Orlova LA, Sukhov VS (2011) The role of ions Ca2+, H+ and Cl in generation of variation potential in pumpkin plants. Russ J Plant Physiol 58:974–981

    Article  CAS  Google Scholar 

  • Volkov AG, Dunkley TC, Morgan SA, Ruff D, Boyce YC, Labady AJ (2004) Bioelectrochemical signalling in green plants induced by photosensory systems. Bioelectrochem 63:91–94

    Article  CAS  Google Scholar 

  • Volkov AG, Carrell H, Adesina T, Markin VS, Jovanov E (2008) Plant electrical memory. Plant Signal Behav 3:490–492

    Article  PubMed  Google Scholar 

  • Volkov AG, Foster JC, Markin VS (2010) Signal transduction in Mimosa pudica: biologically closed electrical circuits. Plant, Cell Environ 33:816–827

    Article  Google Scholar 

  • Wagner E, Lehner L, Normann J, Weit J, Albrechtova J (2006) Hydro-electrochemical integration of the higher plant- basis for electrogenic flower induction. In: Baluska F, Mancuso S, Volkmann D (eds) Communication in plants: neuronal aspects of plant life. Springer, Berlin, pp 369–389

    Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of small-world networks. Nature 393:440–442

    Article  PubMed  CAS  Google Scholar 

  • Wayne R (1994) The excitability of plant cells: with a special emphasis on characean internodal cells. Bot Rev 60:265–367

    Article  PubMed  CAS  Google Scholar 

  • Wildon DC, Thain JF, Minchin PEH, Gubb IR, Reilly AJ, Skipper YD, Doherty HM, O’Donnell PJ, Bowles DJ (1992) Electrical signalling and systemic proteinase inhibitor induction in the wounded plant. Nature 360:62–65

    Article  CAS  Google Scholar 

  • Yuan JS, Galbraith DW, Dai SY, Griffin P, Neal Stewart C (2008) Plant systems biology comes of age. Trends Plant Sci 13:165–171

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann U, Beckers F (1978) Generation of action potentials in Chara corallina by turgor pressure changes. Planta 138:173–179

    Article  Google Scholar 

  • Zurcher E, Cantiani M-G, Sorbett-Guerri F, Michel D (1998) Tree stem diameters fluctuate with tide. Nature 392:665–666

    Article  CAS  Google Scholar 

  • Zurcher E, Schlaepfer R, Conedara M, Giudici F (2009) Looking for differences in wood properties as a function of felling date: lunar phase correlated variations in the drying behaviour of Norway spruce (Picea alba Karst) and sweet chestnut (Castaneae sativa). Trees 30:249–257. doi:10.1007/

    Google Scholar 

Download references

Acknowledgments

I thank the members of the Indian Institute of Science, Bangalore, and of the Bose Institute in Kolkata for their generous hospitality. Especially, I thank Debi Sengupta, for his friendship and lively discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Shepherd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shepherd, V.A. (2012). At the Roots of Plant Neurobiology. In: Volkov, A. (eds) Plant Electrophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29119-7_1

Download citation

Publish with us

Policies and ethics